

KIVALINA CAUSEWAY GEOTECHNICAL REPORT, KIVALINA, ALASKA

REPORT

Submitted To: US Army Corps of Engineers, Alaska District ATTN: CEPOA-EN-G (John Rajek) P.O. BOX 6898 JBER, AK 99506-0898

Submitted By: Golder Associates Inc. 2121 Abbott Road, Suite 100 Anchorage, Alaska, USA 99507

Distribution: 6 Copies + 6 CD's – US Army Corps of Engineers, Alaska District 2 Copies – Golder Associates Inc.

August 14, 2015

1419207

Table of Contents

1.0	IN	TRODUCTION1
1.1		Project Description1
1.2		Purpose and Scope1
1.3		Project Team
2.0	G	EOTECHNICAL SITE INVESTIGATION
2.1		Subsurface Drilling and Sampling
2	2.1.1	Site Contamination Screening4
2	2.1.2	Completion of Boreholes4
2.2		Subsurface Temperature Measurements5
2.3		Laboratory Testing
3.0	SI	TE CONDITIONS7
3.1		Regional Setting
3.2		Regional Geology7
3.3		Existing Geotechnical Data
3.4		Subsurface Conditions9
3	3.4.1	Lagoonal Deposits10
3	3.4.2	Nearshore Marine Deposits10
3	3.4.3	Outwash Deposits10
3	3.4.4	Very Loose Zones 10
3	3.4.5	Salinity10
3	3.4.6	Permafrost11
3	3.4.7	Free Water at Depth11
4.0	LI	MITATIONS AND USE OF REPORT12
5.0	C	LOSING

List of Tables

- Table 1 Borehole Locations and Ground Elevations
- Table 2 **Generalized Soil Properties**

List of Figures

- Figure 1 Figure 2 Vicinity Map
- Borehole Location Map Geologic Plan and Profile Figure 3

List of Appendices

- Appendix A Borehole Logs
- Appendix B Laboratory Data
- Appendix C Ground Temperature Data

1.0 INTRODUCTION

1.1 Project Description

Golder Associates Inc. (Golder) has been contracted by the US Army Corps of Engineers, Alaska District (USACE) to perform a subsurface exploration program for the Kivalina Evacuation Road Project in Kivalina, Alaska. The community of Kivalina is located on a barrier island that lies between the Kivalina Lagoon and the Chukchi Sea along the northwest coast of Alaska. Kivalina is located approximately 80 miles northwest of the community of Kotzebue, Alaska, and 75 miles southeast of the community of Point Hope, Alaska. The project location is depicted in the Vicinity Map, Figure 1.

The project consists of an emergency evacuation road crossing the Kivalina Lagoon. The road will incorporate a system of abutments/piers, bridge structures, causeways, and approach roads. At the time of this report, final grades, elevations, spans, and specific design details are not known.

This report provides the results of Golder's review of existing data, geotechnical site exploration, laboratory testing, and discussion of findings. This work was done in accordance with the Statement of Work (SoW) provided by USACE (Statement of Work Revision 10 February 2015 – Contract No. W911KB-13-D-0009), and with the USACE approved Quality Control Plan, Health and Safety Plan, and Geotechnical Work Plan.

1.2 Purpose and Scope

Our scope of work consisted of performing a geotechnical site investigation and characterizing the subsurface conditions for the proposed Kivalina Evacuation Road. Golder's findings and geotechnical considerations will support additional engineering design, permitting, and construction cost estimates, all of which will be developed by others. Our scope of services did not include developing geotechnical engineering designs, recommendations, or bid-ready construction documents. Golder's scope of work included:

- Reviewing readily available historical geotechnical explorations within and near the project area.
- Planning and executing a geotechnical drilling program to explore the subsurface soil and thermal conditions along the proposed road alignment up to 50 feet below grade.
- Performing Laboratory testing on samples collected during the geotechnical exploration.
- Providing results of the subsurface exploration and laboratory testing programs in a written Geotechnical Data Report.

Subsurface conditions were characterized by performing a subsurface exploration that included advancing boreholes, collecting soil samples, and laboratory testing. Based on the findings from the field study and laboratory testing, as well as our understanding of the site geology and regional seismic hazards, we are providing a discussion of our analysis.

1.3 **Project Team**

The Golder Project Team consisted of a Project Director, Project Manager, and Team Lead. Mr. Tom Krzewinski, PE, was Project Director and provided senior oversight for the project, while Mr. John Thornley, PE, the Project Manager, was accountable for project planning, monitoring, and closure. Mr. Ryan Campbell was the Team Lead and managed the field exploration program. Drilling services were provided by Discovery Drilling Inc. (Discovery) of Anchorage, Alaska. Logistics and billeting were provided by Remote Site Services Inc. (RSSI) of Anchorage, Alaska.

2.0 GEOTECHNICAL SITE INVESTIGATION

2.1 Subsurface Drilling and Sampling

The purpose of the drilling program was to explore the subsurface conditions within the project site to determine the physical and engineering characteristics of the soils. The drilling program was conducted between March 14, 2015 and March 21, 2015. Drilling was conducted using a track-mounted Geoprobe 6712DT drill rig, owned and operated by Discovery. A total of six (6) boreholes, identified as K15-01 through K15-06 (Permanent Borehole Numbers AP-39 through AP-44), were advanced at the site, as shown on the Borehole Location Map, Figure 2. The boreholes consisted of two 50-foot boreholes at proposed abutment locations and four 30-foot boreholes along the proposed causeway alignment for a total of 220 linear feet. Each borehole was drilled from the surface of the lagoon ice. The lagoon ice was ground fast at the time the boreholes were drilled.

Drilling was accomplished using hollow-stem auger methods. The augers used during the exploration have an inner diameter of 3.25 inches and an outer diameter of 6.625 inches. Samples were obtained using a 2.0-inch outside diameter (O.D.) split-barrel sampler driven by a 140-pound automatic hammer following the procedures outlined in the American Society of Testing and Materials (ASTM) D1586, "Standard Test Method for Penetration Test and Split Barrel Sampling of Soils." In general, drive samples were collected at 2.5-foot intervals to 17.5 feet, and at 5-foot intervals thereafter to proposed test borehole depths, or at major soil type transitions. In the frozen near surface materials encountered in Boreholes K15-01 (AP-39) and K15-04 (AP-42) where insufficient penetration and material recovery was obtained using the equipment required by the ASTM D1586 test method, a modified penetration test was performed. The modified penetration test included a 3.0-inch O.D. split-barrel sampler and automatic drop hammer set to drop a 340-pound weight a distance of 30 inches.

Samplers were driven into the soil using a 140-pound automatic hammer free-falling a vertical distance of 30 inches. The number of hammer blows or blow counts generally required to drive the sampler in four 6inch segments were recorded during sampling. The combined blow count for the middle two 6-inch segments is referred to as the uncorrected SPT N-value. Sampling procedures employed in the field were consistent with those described by the American Society for Testing and Materials, ASTM D1586, "Standard Test Method for Penetration Test and Split Barrel Sampling" (2011) with the exception of use of the larger spoon and hammer. Advancement of the SPT sampler was ceased when blow counts to drive the sampler reached 50 blows, in six inches, or more (refusal). Individual blow counts for each sample can be found in the Appendix A, Borehole logs.

Heave was encountered in Borehole K15-01 (AP-39) and K15-04 (AP-42) near the surface at five feet bgs and four feet bgs respectively and was controlled by using the auger wash method. This method uses water poured into the augers to increase the head pressure, to maintain bit circulation while drilling. In all

4

1419207

the boreholes the auger wash method was used to prevent heave. The term "AW" was recorded on the borehole log and sample summary when auger wash methods were used and is indicated on the individual borehole logs and can be found in Appendix A, Borehole Logs.

Each soil sample collected in the field was classified in accordance with ASTM D2488, "Description and Identification of Soils (Visual-Manual Procedure)." Where frozen conditions were encountered, soil samples were also classified in accordance with ASTM D-4083, "Frozen Soil Classification." Collected soil samples were handled in accordance with ASTM D4220, "Standard Practices of Preserving and Transporting Soil Samples." The borehole logs are presented in Appendix A. Boundaries between different soil types presented on the logs are approximate because actual transition between layers may be gradual.

2.1.1 Site Contamination Screening

Collected soil samples were placed in plastic bags and warmed to at least 50 degrees Fahrenheit (°F) before beginning the screening process. After about 30 minutes, the samples were screened with a Photoionization Detector (PID) to estimate the presence of volatile organic compound (VOC) levels. The PID used was equipped with a 10.2-electron-volt (eV) lamp. After warming and prior to testing, each sample was shaken or agitated for 15 seconds at the beginning and end of the vapor development period to assist volatilization. After vapor development, the PID sampling probe was inserted to about one-half the headspace depth and the highest meter reading was recorded, which was normally between two and five seconds after probe insertion. Care was taken when inserting the sampling probe into the bag to avoid uptake of any moisture or soil particles. The PID was calibrated at the beginning of every field day with 100-parts per million (ppm) isobutylene calibration gas. As stated in the project's Final Work Plan¹, soils with PID readings above 20 ppm, stained, or emitting odors were considered contaminated. Based on the field screenings, no contaminated soils were observed during the exploration.

2.1.2 Completion of Boreholes

Upon completion of drilling, a one-inch diameter, schedule 120 polyvinyl chloride (PVC) pipe was installed in select boreholes to allow for subsurface ground temperature measurements. The annular space between the PVC pipe and the sidewall of the boreholes was backfilled with non-contaminated drill cuttings. In compliance with Golder's Health and Safety plan, boreholes were not left open overnight without barriers and/or guarding. Horizontal locations were collected using Trimble Geo7x global positioning system (GPS) unit and differentially corrected by post-processing using Trimble GPS Pathfinder software. Post process position accuracy on the observations is between 0 and 50 cm. The borehole locations and elevations are presented in Table 1 below and shown on the Borehole Location

¹ Kivalina Evacuation Road Project, Final Work Plan. Submitted to USACE - Alaska District by Golder Associates Inc. March 6, 2015. Project Number 1419207

Map, Figure 2. Borehole elevations are assumed from bathymetric data provided by USACE on April 30, 2015.

Borehole	Northing (AK83-8F)	Easting (AK83-8F)	Latitude (WGS84)	Longitude (WGS84)	Elevation (Feet) ¹
K15-01 (AP-39)	5021268.196	1842645.871	67.73054419	-164.5427967	-2.34
K15-02 (AP-40)	5021391.276	1842782.222	67.73087171	-164.5417937	-3.38
K15-03 (AP-41)	5021535.562	1842911.126	67.73125763	-164.5408408	-2.14
K15-04 (AP-42)	5021952.875	1843319.69	67.73237149	-164.5378269	-1.85
K15-05 (AP-43)	5022472.143	1843929.111	67.73375086	-164.5333484	-1.4
K15-06 (AP-44)	5023107.386	1844698.75	67.73543656	-164.5276952	-1.77

 Table 1: Borehole Locations and Mudline Elevations

Notes: Vertical Control is Mean Lower Low Water (MLLW = 0.0' NAVD-88)

¹ Assumed elevations from bathymetric data provided by USACE.

2.2 Subsurface Temperature Measurements

Subsurface temperatures were measured in Boreholes K15-01 (AP-39), K15-02 (AP-40), and K15-06 (AP-44) over the period of 30 days following the completion of drilling and recorded as the temperatures stabilized. Subsurface temperatures were measured using a Temperature Acquisition Cable (TAC) with sensor depth spacing of 2.5 feet from the ground surface to 20 feet bgs, and five (5) foot spacing from 20 to 50 feet bgs. Data was recorded on a TAC datalogger that was retrieved by RSSI employee Alex Hawley. Results are presented in Temperature Data Recordings, Appendix C.

2.3 Laboratory Testing

A total of 72 representative soil samples were selected for laboratory testing and tested by DOWL of Anchorage, Alaska, a USACE validated geotechnical laboratory. The laboratory testing was performed for the following purposes:

- Substantiating visual field classifications ASTM D2488
- Classification of Soils (USCS) ASTM D2487
- Particle-Size Analysis of Soils ASTM D422
- Moisture Content ASTM D2216
- Atterberg Limits ASTM D4318
- Moisture, Ash, and Organic Matter of Peat and Other Organic Soils ASTM D2974
- Salinity Testing DOWL In-house procedure
 - (Place 100g of material and place in 250ml beaker. Record weight and add equal amount of distilled water and record weight again. Stir samples and let stand

overnight. Determine type of environment samples were recovered from and utilize standard most representative of environment. Stir sample and read temperature and conductivity with conductivity meter.)

Results of laboratory testing are presented in the Laboratory Test Summary, Appendix B. Select laboratory testing results are also presented on the borehole logs in Appendix A.

3.0 SITE CONDITIONS

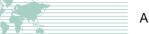
3.1 Regional Setting

Kivalina is within the Arctic Foothills Physiographic Province, which is generally characterized by rolling hills and gentle slopes. The Community of Kivalina; however, is located on the southern end of Kivalina Island, a barrier island that separates Kivalina Lagoon on the east from the Chukchi Sea on the west. The Kivalina River and the Wulik River both flow into Kivalina Lagoon, which in turn discharges into the open sea through the Kivalik Inlet and the Sinauk Entrance.

Kivalina Island is generally less than 20 feet above sea level, is almost flat, and consists of geologically modern beach-sand deposits. Some gravel is present at each end of the island, but historically most granular construction material has been brought in from the Wulik River floodplain. We understand that the only significant source of locally available granular material is from the floodplains and deltas of the two major drainages east of the Kivalina Lagoon.

The Chukchi Sea has a major weather impact on the local climate, but because the Chukchi Sea is frozen for over half the year, Kivalina has a climate that is transitional between Maritime and Continental. The mean annual temperature is about 20°F with an average precipitation rate of less than 10 inches per year. Snowfall is on the order of three feet per year and persistent winter winds can result in significant drifting. Permafrost is present throughout the mainland area east of the Kivalina Lagoon.

Tidal influence in the Kivalina Lagoon is unknown at this time, but the nearest official tide recording station to Kivalina is located at the Red Dog Port, approximately 17 miles to the south. The mean range of tides at the Red Dog Port (9491094) is 0.66 feet from mean sea level according to the National Oceanic and Atmospheric Administration (NOAA)².


3.2 Regional Geology

Bedrock is seldom exposed in the project area except in isolated hills, especially those northwest of the Kivalina floodplain. These hills are topped with rock rubble and outcrops of limestone have been reported. DMA, 2007 see Section 3.3. Kisimigiuktuk Hill, the only hill in or near the project area, is rubble covered.

Although Pleistocene glaciation did not extend to the coast, it has had a major impact on the surficial geology in the Kivalina area. Sea level fluctuation has resulted in the accumulation of sandy beach deposits at various locations both offshore and inland from the presently established coastline. These deposits are similar in composition to present beach deposits, but in many cases they have been partially or totally eroded away or buried by newer fine grained material.

² NOAA Tide and Current Data, http://tidesandcurrents.noaa.gov/map/

The drainage patterns of the Wulik and Kivalina Rivers have controlled much of the post-glacial deposition of local sediments. Glacial deposits in the headwaters have been reworked by stream and river action and are the source of gravelly sand and sandy gravel deposits in the modern floodplains. Wind-blown silt and sand is often present as a near-surface veneer that, with surface vegetation, forms the present tundra cover. Along the eastern edge of Kivalina Lagoon, between the two rivers, a vegetation covered and tidally influenced zone extends as much as two miles inland.

Beneath one to two feet of seasonally thawed material, the mainland east of the lagoon is almost universally underlain by permafrost. Horizontally layered ice masses are common and near vertical ice wedges that have developed in soil contraction cracks often result in a surficial feature known as polygonal patterned ground. This segregated ice is generally confined to the fine-grained, organic-rich surface material, but under some conditions ice wedges have penetrated into the underlying granular material.

3.3 Existing Geotechnical Data

Golder has conducted geotechnical investigations in Kivalina since the 1990's for infrastructure development projects. Most of our in-house geotechnical data is not located near the proposed evacuation road alignment, although important information about the general subsurface conditions in the area may be applicable. Key elements from our review of historic geotechnical data near the proposed improvements are summarized below.

- Golder Associates Inc. (Golder) Geotechnical Findings and Conceptual Recommendations, Kivalina Evacuation Road, 2013. Golder was subcontracted by WHPacific to perform a geotechnical field exploration and provide conceptual-level geotechnical recommendations and considerations for a light-duty, double-lane unpaved roadway. Two roadway alignments, the northern and southern route, were investigated during this program. Based on probe and shallow drill hole data, the southern route was identified as the most viable for the construction of the roadway. The subsurface conditions along the southern alignment generally consisted of approximately 0.5 to 1.5 feet of unfrozen organic mat (PT) overlying approximately two to four feet of frozen silty sand (SM). Five granular material sources for construction of the roadway were also identified.
- Duane Miller and Associates (DMA), Material Source Desktop Study, 2007. In 2007 DMA issued a desktop investigation report on potential material targets in and around the Kivalina area. Sandy gravel and sand deposits were identified within the modern floodplains of the Wulik drainage as potential areas for aggregate material assessments. Old beach lines and associated back beach sand dunes were also identified as potential targets for unclassified granular material areas. Rock and rock rubble deposits from bedrock ridges were also identified as potential sources for crushed material.
- DMA (and others), Permafrost and Wetlands Report, National Guard Armories, Western and Northern Alaska, 2006. In August 2006, DMA probed for potential active layer depths at the armory in Kivalina. A 30-foot by 30-foot grid was established on the armory site and shallow hand-dug test pits were excavated at two of the grid nodes. Beneath a thin organic mat of grasses and roots, sand with trace fine gravel was

9

1419207

observed to a test pit termination depth of three feet. Frozen ground was not encountered with a five-foot probe in August, although permafrost is expected to be present below the five-foot depth.

- US Army Corps of Engineers (USACE), Relocation Planning Project 2005. In December 2005, USACE identified seven potential locations for the relocation of the Village of Kivalina. The purpose of the report was to provide residents and stakeholders with the information necessary to make an informed decision regarding the best solution for the community. Kivalina residents voted several times to choose the new village town site, but could not come to a conclusion as to where the new site would be located.
- AKDOT & PF, Engineering Geology and Soils Report, Kivalina Airport, 1984. In August 1984, nine boreholes were drilled in support of a runway expansion in Kivalina. The subsurface profile consisted of a surficial organic mat 0.5 feet thick, underlain by sand to 8 to 14 feet deep. An organic silt layer at least five feet thick was encountered beneath the sand. The active layer was observed at four to six feet below the ground surface and was underlain by permafrost to the depths explored.

3.4 Subsurface Conditions

Based on findings from the current geotechnical study, the subsurface conditions along the causeway alignment generally consist of three different sedimentary horizons: 1) lagoonal deposits, 2) nearshore marine deposits, and 3) outwash deposits. The majority of the soils observed in these deposits consisted of silt, organic silt, sandy silt, and silty sand. General soil properties measured in the laboratory for each sedimentary horizon is presented in Table 2. Each sedimentary horizon is discussed in detail in the following section. A geologic cross section along the proposed causeway alignment is shown in Figure 3.

	Sedimentary Horizons			
		Lagoonal Deposits	Nearshore Deposits	Outwash Deposits
Classi	S Soil fication Note 1)	OL, ML	SP-SM, SM, ML	GW, SW-SM
Organic	Average	7	4.5	NA
Content	Minimum	5.8	4	NA
(%)	Maximum	7.5	5.1	NA
Moisture	Average	42	26	15
Content	Minimum	32	11	6
(%)	Maximum	63	53	31
	Average	8.3	5.7	10.8
Salinity (ppt)	Minimum	2.3	2.7	10.8
(PP()	Maximum	15.6	8.6	10.8

Table 2: Generalized Soil Properties

Notes: 1. Refer to Appendix A, Figure A-1 for USCS Classification abbreviations.

3.4.1 Lagoonal Deposits

Lagoonal deposits generally consist of organic-rich silts, silts with organics, and minor lenses of sand that have been deposited in protected lagoon and bay environments. Locally, the surface layer consists of very soft to firm non-plastic sandy silt ranging from 3 to 17 feet thick and thickening towards the mainland. However, silty sand was encountered at the surface in Boreholes K15-01 (AP-39) and K15-05 (AP-43). The surface layer at Borehole K15-01 (AP-39) may be part of the near shore marine horizon, as a fresh water channel located between Borehole K15-01 (AP-39) and Borehole K15-02 (AP-40) is connected to the Wulik River. Fine grained, organic-rich deposits observed near the bottom of Boreholes K15-01 (AP-39), K15-02 (AP-40), and K15-04 (AP-42) may be older Lagoonal deposits.

3.4.2 Nearshore Marine Deposits

Nearshore Marine deposits generally consist of unstructured mixtures of silty sands and sandy silts that have been reworked by grounding sea ice. Locally, Nearshore Marine deposits underlie the surface Lagoonal deposits, and are very loose to dense silty sands interbedded with sandy silt up to 46 feet thick. The Nearshore Marine deposits were the predominant soil types observed in boreholes.

3.4.3 Outwash Deposits

Generally, Outwash deposits consist of fluvial and glaciofluvial interbedded gravel and sand with minor silty lenses. These deposits tend to be well-graded sand and gravels with low fines content. Locally, these deposits are dense to very dense well-graded gravel and well-graded sand with silt and gravel. These deposits were observed near the bottom of Boreholes K15-01 (AP-39), K15-02 (AP-40), K15-05 (AP-43) and K15-06 (AP-44), and ranged in thickness from 3.5 to 12.5 feet thick. The Outwash deposits were underlain by older Pleistocene-age Lagoonal deposits.

3.4.4 Very Loose Zones

Three very loose zones were encountered during the geotechnical investigation. These very loose zones have SPT blow counts ranging from 0 to 3 blows per foot. Two of the zones are projected between Boreholes K15-01 (AP-39) and K15-02 (AP-40). The first very loose zone is located near the surface approximately 4.5 to 7 feet below mudline and coincides with the fresh water channel. The second very loose zone was encountered at a deeper depth from approximately 22 to 30 feet bgs. The third very loose zone ranges from 7 to 11 feet bgs at Borehole K15-05 (AP-43) and increases in thickness to 5 to 15 feet bgs as it approaches the mainland at Borehole K15-06 (AP-44).

3.4.5 Salinity

Salinity was measured in Boreholes K15-03 (AP-41) and K15-06 (AP-44). The salinity measurements in Borehole K15-03 (AP-41), located approximately 500 feet west of the village of Kivalina, ranged from 2.3 to 8.4 parts per thousand (ppt). No permafrost was found in this borehole. The salinity measurements in Borehole K15-06 (AP-44), located approximately 80 feet from the mainland, ranged from 5.2 to 15.6 ppt.

Permafrost was encountered in this borehole from 17 to 31 feet with salinity measurements ranging from 5.2 to 10.8 ppt. In comparison, seawater has a salinity of about 33 ppt and freezes at about 28.7°F.

3.4.6 Permafrost

Permafrost was encountered in Boreholes K15-05 (AP-43) and K15-06 (AP-44) within the underlying silty sands at approximate depths of 11 to 21 feet and 17 to 31 feet bgs, respectively. The permafrost is considered poorly-bonded. The measured moisture content in the permafrost soils ranged from 6 to 41 percent and was observed in the field to contain excess non-visible ice. The permafrost encountered in both boreholes may be considered relict permafrost. Relict permafrost is permafrost that has remained from the last sub-aerial exposure of the existing seafloor. During the Pleistocene epoch, 10,000 to 2.6 million years ago, the shallow lagoon may have been exposed to the sub aerial environment during glacial maximums. In addition, the fine grained and organic soils may have insulated the underlying permafrost even after the lagoon was inundated with seawater.

3.4.7 Free Water at Depth

Free water at depth was encountered in all of the boreholes while drilling and ranged from 3.0 to 7.0 feet bgs. See Table 3 for individual free water depths per borehole. A fresh water channel was observed flowing between boreholes K15-01 (AP-39) and K15-02 (AP-40) and appears to be an extension of the Wulik River.

Table 3: Free Water Depths Encountered at Time of Drilling
--

Borehole			K15-03 (AP-41)			K15-06 (AP-44)
Depth bgs (ft)	3.0	3.5	7.0	3.5	7.0	6.5

4.0 LIMITATIONS AND USE OF REPORT

This report has been prepared exclusively for the U.S. Army Corps of Engineers (USACE), Alaska District, for the Kivalina Causeway Geotechnical Project in Kivalina, Alaska. The findings, conclusions, and discussion presented in this report are based on visual inspection of the site conditions and limited subsurface exploration data. This report and related work program was prepared in a manner consistent with the level of care and skill ordinarily exercised by other members of the geotechnical engineering profession in the State of Alaska currently practicing under similar conditions and subject to the time limits and financial, physical, and other constraints applicable to the scope of work. No warranty expressed or implied is made.

The construction process is an integral design component with respect to the geotechnical aspects of a project. Geotechnical engineering is not an exact science because of the variability of natural processes. Only a very small portion of the soils that affect the performance of the project have been sampled or observed; thus, variations in subsurface conditions may be present between the shallow explorations authorized under this scope of work and unsampled areas. Variations may also occur with time. Therefore, inspection and testing by a qualified geotechnical engineer should be included during construction to provide corrective recommendations adapted to the conditions revealed during the work. If there are significant changes to the subsurface conditions presented in this report, we should be notified so that we may review our conclusions and provide a written modification or verification of the changes.

The USACE has the responsibility to see that all future parties to the project, including the designer, contractor, subcontractors, etc., are made aware of this report in its entirety. This report contains information that may be useful in the preparation of contract specifications and contractor cost estimates. However, this report is not written as a specification document and may not contain sufficient information for this use without proper modification.

August 2015

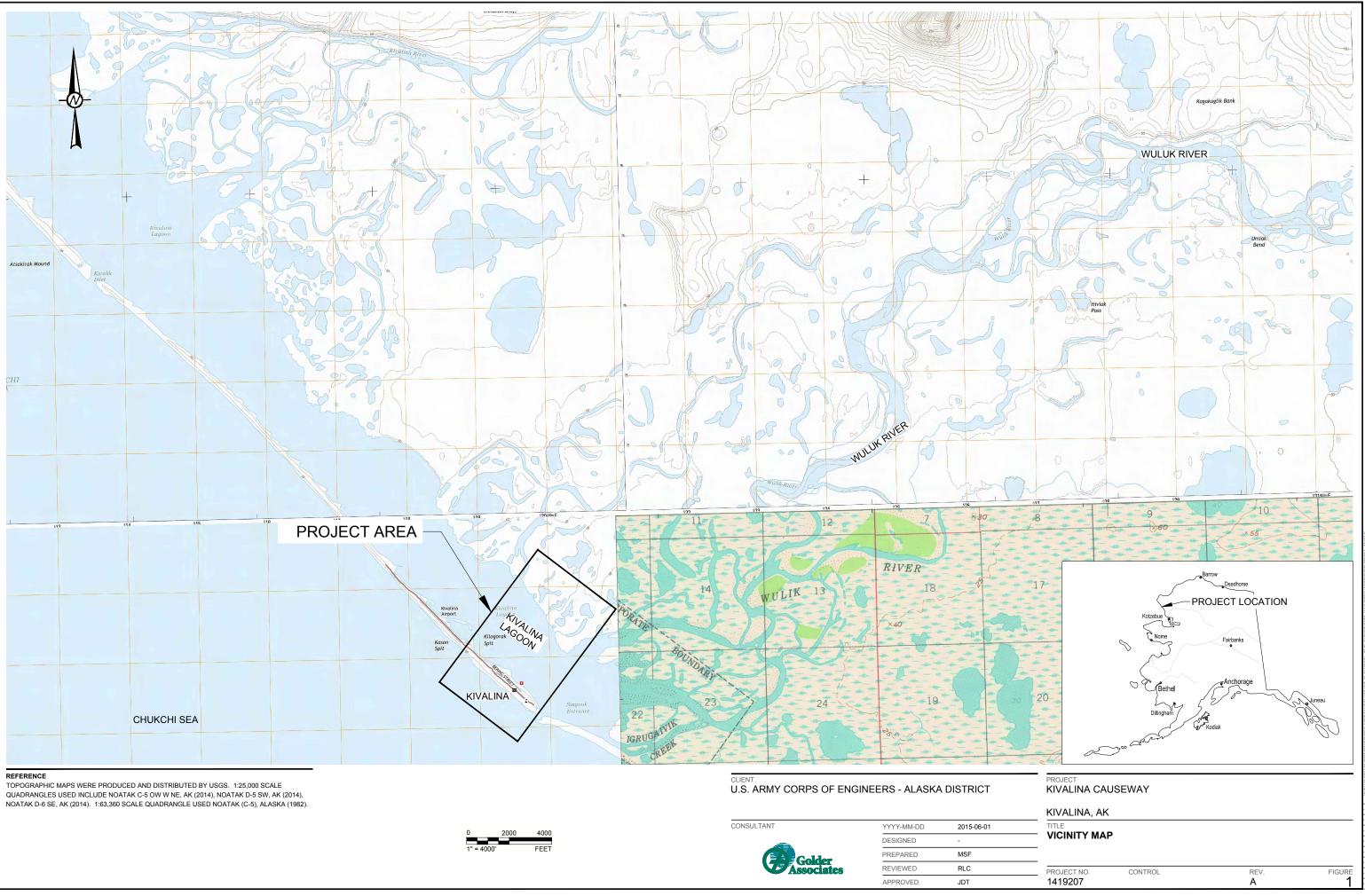
13

1419207

5.0 CLOSING

We appreciate the opportunity to provide this report. We are available to provide additional recommendations or comments as necessary. Please contact us at 907-344-6001 if you have questions or comments.

GOLDER ASSOCIATES INC,


Ryan L. Campbell Project Engineering Geologist

RLC/JDT/SLA/mlp

John D. Thornley, PE Senior Geotechnical Engineer

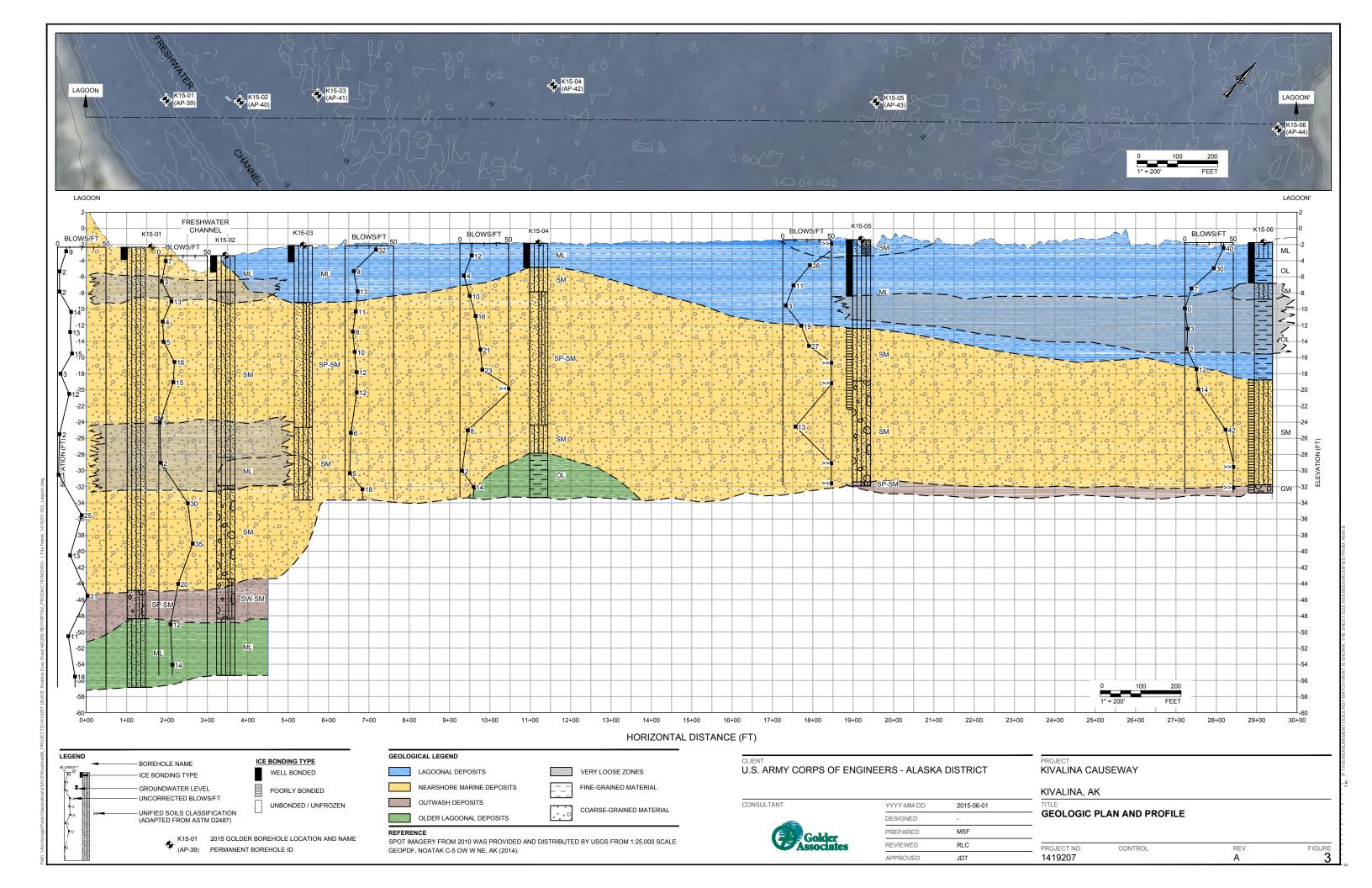
FIGURES

YYYY-MM-DD	2015-06-01
DESIGNED	-
PREPARED	MSF
REVIEWED	RLC
	IDT

LEGEND

- K15-01 2015 GOLDER BOREHOLE LOCATION AND NAME (AP-39) PERMANENT BOREHOLE ID

- REFERENCE/NOTES
 SPOT IMAGERY FROM 2010 WAS PROVIDED AND DISTRIBUTED BY USGS FROM 1:25,000 SCALE GEOPDF, NOATAK C-5 OW W NE, AK (2014)
 SURFACE/BATHYMETRIC ELEVATION DATA PROVIDED BY USACE ON APRIL 30, 2015
 VERTICAL CONTROL IS MEAN LOWER LOW WATER (MLLW=0.0') BASED ON NAVD88 LOCAL CONTROL VALUES
 HORIZONTAL CONTROL IS AK83-8F
 CONTOUR INTERVAL IS 1' & 5'
 PROPOSED ROAD LOCATIONS PROVIDED BY WHPACIFIC SUMMER 2013


CLIENT U.S. ARMY CORPS OF ENGINEERS - ALASKA DISTRICT

Golder Associates

CONSULTANT	

YYYY-MM-DD	2015-06-01
DESIGNED	-
PREPARED	MSF
REVIEWED	RLC
APPROVED	JDT

17 2012	Brack	100	1000	
My AL				
	O Sta			
	2 ./ 3	PROPOSED ROA	D -	
			-	10 14
	15-06 P-44)	and the second		
		З		
Yop's gr				
35 1 m				
	2			
. 16				
0 L	-			
\sum	0	150 300	and the	
7,15	1" = 300'	FEET	CC.	
PROJECT				
KIVALINA CAUS	SEWAY			
KIVALINA, AK TITLE BOREHOLE LO				
PROJECT NO. 1419207	CONTROL		REV. A	FIGUR
				-

APPENDIX A BOREHOLE LOGS

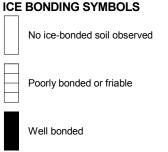
/ATERIAL TYPES			CRITERIA FOR ASSIGNING SOIL GROUP NAMES AND GROUP SYMBOLS USING LABORATORY TESTS				P SOIL GROUP NAMES & LEGEND)	
TIFLS					$4 \text{ AND } 1 \le C_c \le 3$	SYMBOL GW	WELL-GRADEI		Kry	
	GRAVELS		CLEAN GRAVELS <5% FINES	-		_			R	ins add
SOILS	>50% OF CC FRACTION RE	TAINED			4 AND/OR [C _c < 1 OR C _c > 3]	GP	POORLY GRAD		NO NO	If soil contains ≥15% sand, add "with sand"
	ON NO 4. S	JEVE	GRAVELS WITH FINES	FINE	S CLASSIFY AS ML OR MH	GM	SILTY GRAVEL	-		lf soi ≥15% "wii
ZAINE TAINI 00 SIE			>12% FINES	FINE	S CLASSIFY AS CL OR CH	GC	CLAYEY GRAV	/EL	Ø.	
ARSE-GRAINED SOI >50% RETAINED ON NO. 200 SIEVE	SANDS	3	CLEAN SANDS	C _∪ ≥	6 AND 1 \leq C _c \leq 3	SW	WELL-GRADE	D SAND		add "
COARSE-GRAINE >50% RETAINE NO. 200 SIE/	≥50% OF CC		<5% FINES	C _U <	6 AND/OR [C _c < 1 OR C _c > 3]	SP	POORLY GRAD	DED SAND		If soil contains ≥ 15% gravel, add "with gravel"
o	FRACTION P. ON NO 4. S		SANDS AND FINES	FINE	S CLASSIFY AS ML OR MH	SM	SILTY SAND			If soil d 15% g "with
			>12% FINES	FINE	S CLASSIFY AS CL OR CH	SC	CLAYEY SAND)		Л
	SILTS AND C	CLAYS		LAYOR	SILT	CL	LEAN CLAY			from with inent,
SOILS ES VE	LIQUID LIMI	T <50	G U(OH, OL) if: LL (oven dried) UL (not dried) LL (not dried)	$\frac{d}{d} < 0.75$	CH LINE	ML	SILT			s coarse-grained soil from add "with sand" or "with ichever type is prominent
IED S ASSE SIEV					(TT)	OL	ORGANIC CLA	Y OR SILT		coarse-grained soil fron add "with sand" or "with chever type is prominent
LE-GRAINED SOII >50% PASSES NO. 200 SIEVE	SILTS AND (CLAYS			Un Color N	СН	FAT CLAY			add "w chever
FINE-GF >50° NO.	LIQUID LIMI	Γ≥50		M	MH	МН	ELASTIC SILT		Ĩ	If soil contains coarse-grained soil from 15% to 29%, add "with sand" or "with gravel" for whichever type is prominent, or for 2000, add "boods" or "monds".
ш				30 40	50 60 70 80 90 100	ОН	ORGANIC CLA	Y OR SILT		f soil c 15% to jravel"
HIGHLY C	ORGANIC SOILS		PRIMARILY ORGANIC MATTE			PT	PEAT		KE	_ 0,
Gravels or sa GW-GC, GP- lay" or "with lual symbol C ner. <i>Optiona</i> ither "sandy"	GM, GP-GC, SW-S silt" to group name GC-GM or SC-SM. al Abbeviations: Lo ' or "with sand" whi	C fines requi SM, SW-SC, . If fines cla D _(X%) is soil wer case "s" ile "g" denote	$c = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ $c = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ ire dual symbols (GW-GM, , SP-SM, SP-SC) and add "M, sisify as CL-ML for GM or SM particle diameter where X% i "after USCS group symbol d es either "gravelly" or "with gr MOISTURE CONDI	with M, use is % Jenotes ravel"	RELATIVE USING STANE (adap COHESIONLESS SOIL RELATIVE DENSITY (bbc VERY LOOSE	DENSITY DARD PEN ted from S ^(a) N ₁₎₆₀ wws/ft) ^(c) 0 - 4	CONSISTENCY VERY SOFT	ST (SPT) V/ eck 1967) SIVE SOILS ^(b) (blows/ft) ^(c) S 0 - 2	UNCO COMPF TRENG	NFINED RESSIVE TH (TSF) ^{(d} 0.25
COMPC	D Lo	C % fines requi SM, SW-SC, . If fines cla D _(X%) is soil wer case "s" RIBING M rom AS DISTURE, DL SIBLE WATI ATER, USU/ E INITION	$\begin{split} & \sum_{c} = \frac{\left(D_{30} \right)^2}{D_{10} \times D_{60}} \\ & \text{ire dual symbols (GW-GM, '', SP-SC) and add ''w, sp-SM, SP-SC) and add ''w, sisify as CL-ML for GM or SN particle diameter where X% i after USCS group symbol dese either ''gravelly'' or ''with gr mOISTURE CONDI' TM D2488) \\ & \text{JSTY, DRY TO THE TOUCH ER } \\ & \text{ALLY SOIL IS BELOW} \\ & \text{IS BY GRADATION} \\ & \text{SIZE RANGE} \end{split}$	with M, use is % Jenotes rave!" ITION	RELATIVE USING STAND (adap) COHESIONLESS SOIL RELATIVE DENSITY (blc VERY LOOSE LOOSE 4 COMPACT 11 DENSE 3 VERY DENSE 0V (a) Soils consisting of gravel, sand plasticity, and exhibiting drained (b) Soils possessing the character (c) Refer to ASTM D1586 for a def overburden pressure, and is de including: material size, sample disturbance. N values are ont	DENSITY PARD PEN ted from $S^{(a)}$ $N_1)_{e0}$ $ws/ft)^{(c)}$ 0 - 4 l - 10 0 - 30 0 - 50 / ER 50 l, and silt, either J behavior. isitics of plastic finition of N val- tailed in ASTN r size, hamme y an approxim		$\begin{array}{c} \textbf{ST} (\textbf{SPT}) \textbf{V} \\ \textbf{eck 1967} \\ \textbf{eck 1967} \\ \textbf{SIVE SOILS}^{(b)} \\ \hline \textbf{(blows/ft)}^{(c)} & \textbf{S} \\ \hline \textbf{0} & \textbf{2} \\ \textbf{2} & \textbf{4} \\ \textbf{4} & \textbf{8} \\ \textbf{8} & \textbf{-15} \\ \textbf{15} & \textbf{-30} \\ \hline \textbf{OVER 30} \\ \textbf{oination possessing} \\ \textbf{ained behavior.} \\ \textbf{be corrected for haar } y be affected by a a h, drilling method, oil oil or cohesive scores and score $	UNCO COMPF TRENG 0 - 0.25 0.50 1.0 2.0 0VE g no chara mmer ene number of and boret bil.	NFINED RESSIVE TH (TSF) ^(d) 0.25 - 0.50 - 1.0 - 2.0 - 4.0 R 4.0 acteristics of acteristics of actors nole
COMPC COMPC COBBLES	To D in mds with 5% to 129 GM, GP-GC, SW-5 silf to group name GC-GM or SC-SM. al Abbeviations: Lor or "with sand" whi FOR DESCF (adapted f ABSENCE OF MO DAMP BUT NO VIS VISIBLE FREE WA WATER TABLE ONENT DEF DNENT S (1)	C % fines requi SM, SW-SC, . If fines cla D _(X%) is soil wer case "s" ile "g" denote RIBING I rom AS ⁻ DISTURE, DL SIBLE WATH ATER, USUA E FINITION GREATER 12 in. to 3 in	$\begin{split} & \sum_{c} = \frac{\left(D_{30} \right)^2}{D_{10} \times D_{60}} \\ & ire dual symbols (GW-GM, '', SP-SC) and add ''w, sp-SM, SP-SC) and add ''w, sparticle diameter where X% i i safur USCS group symbol dees either ''gravelly'' or ''with gr MOISTURE CONDI' MOISTURE CONDI' TM D2488) USTY, DRY TO THE TOUCH 'ER ALLY SOIL IS BELOW IS BY GRADATION SIZE RANGE THAN 12 in. in.$	with M, use is % Jenotes rave!" ITION	RELATIVE USING STAND (adap) COHESIONLESS SOIL COHESIONLESS SOIL RELATIVE DENSITY (blc (blc VERY LOOSE COMPACT DENSE VERY DENSE ON (a) Soils consisting of gravel, sand plasticity, and exhibiting drainee (b) Soils possessing the character (c) Refer to ASTM D1586 for a dei overburden pressure, and is de including: material size, sample	DENSITY DARD PEN ted from S ^(a) N ₁) ₆₀ wws/ft) ^(c) 0 - 4 4 - 10 0 - 30 0 - 50 /ER 50 I, and silt, eithed behavior. istics of plastic finition of N val tailed in ASTN r size, hamme y an approxim //2 unconfined	CONSISTEN ETRATION TE Terzaghi and P COHE CONSISTENCY VERY SOFT SOFT FIRM STIFF VERY STIFF HARD er separately or in comb sity, and exhibiting undra tue. (N ₁) _{loc} is the N value nate guide for frozen sa compression strength.	$\begin{array}{c} \textbf{ST} (\textbf{SPT}) \textbf{V} \\ \textbf{eck 1967} \\ \textbf{eck 1967} \\ \textbf{SIVE SOILS}^{(b)} \\ \hline \textbf{(blows/ft)}^{(c)} & \textbf{S} \\ \hline \textbf{0} & \textbf{2} \\ \textbf{2} & \textbf{4} \\ \textbf{4} & \textbf{8} \\ \textbf{8} & \textbf{-15} \\ \textbf{15} & \textbf{-30} \\ \hline \textbf{OVER 30} \\ \textbf{oination possessing} \\ \textbf{ained behavior.} \\ \textbf{be corrected for haar } y be affected by a a h, drilling method, oil oil or cohesive scores and score $	UNCO COMPF TRENG 0 - 0.25 0.50 1.0 2.0 0VE g no chara mmer ene number of and boret bil.	NFINED RESSIVE TH (TSF) rd 0.25 - 0.50 - 1.0 - 2.0 - 4.0 R 4.0 acteristics of acteristics of factors nole
COMPC CO	To D in Grand Control D in	Comparison of the section of the se	$\begin{split} & \sum_{c} = \frac{\left(D_{30} \right)^2}{D_{10} \times D_{60}} \\ & ire dual symbols (GW-GM,, SP-SM, SP-SC) and add "w, sparticle diameter where X% is sift as CL-ML for GM or SM particle diameter where X% is either "gravelly" or "with gratter USCS group symbol dies either "gravelly" or "with gratter USCS gratter "gravelly" or "with gratter "gravelly" or "with gratter "gravelly" or "with gratter "gravelly" or "with gratter "gravelly" or "gravelly" or "gravelly" or "gravelly" or "gravel$	with M, use is % Jenotes rave!" ITION	RELATIVE USING STAND (adap) COHESIONLESS SOIL RELATIVE DENSITY (blc VERY LOOSE LOOSE 4 COMPACT 1 DENSE 3 VERY DENSE ON (a) Soils consisting of gravel, sand plasticity, and exhibiting drainer (b) Soils possessing the character (c) Refer to ASTM D1586 for a de overburden pressure, and is de including: material size, sample disturbance. (d) Undrained shear strength, s_n = 1 s_u and pocket penetrometer (PI	DENSITY DARD PEN ted from S ^(a) N ₁ ₈₀ wws/ft) ^(c) 0 - 4 4 - 10 0 - 30 0 - 50 /ER 50 I, and silt, eithe d behavior. istics of plastic finition of N vai trailed in ASTN r size, hamme y an approxim /2 unconfined P) measures U	CONSISTENCY CONSISTENCY CONSISTENCY VERY SOFT SOFT FIRM STIFF VERY STIFF HARD er separately or in comb sity, and exhibiting undra tue. (N ₁) _{bo} is the N value 10 60666. N values may r weight and type, depti nate guide for frozen so compression strength, J _c ER ABBREVIAT	$\begin{array}{c} \textbf{ST} (\textbf{SPT}) \textbf{V} \\ \textbf{eck 1967} \\ \textbf{eck 1967} \\ \textbf{SIVE SOILS}^{(b)} \\ \textbf{SIVE SOILS}^{(b)} \\ \textbf{SIVE SOILS}^{(b)} \\ \textbf{SOILS}^{(b)} \\ $	UNCO COMPF TRENG 0 - 0.25 0.50 1.0 2.0 0VE g no chara mmer ene number of and boret bil.	NFINED RESSIVE TH (TSF) rd 0.25 - 0.50 - 1.0 - 2.0 - 4.0 R 4.0 acteristics of acteristics of factors nole
Ravels or sa Sw-Gc, GP- lay' or 'with a lual symbol C RITERIA DRY MOIST WET COMPC COMPC BOULDERS GRAVEL COARS FINE GI SAND COARS MEDIUN FINE SA	To D 10 D 20 D 20 GM, GP-GC, SW-S GM, GP-GC, SW-S GC-GM or SC-SM. Al Abbeviations: Lor or "with sand" whi FOR DESCF (adapted f ABSENCE OF MO DAMP BUT NO VIS VISIBLE FREE WA WATER TABLE ONENT DEF DNENT S	C C C C C C C C C C C C C C C C C C C	$\begin{split} & \sum_{c} = \frac{\left(D_{30} \right)^2}{D_{10} \times D_{60}} \\ & ire dual symbols (GW-GM, '', SP-SM, SP-SC) and add ''w, sp-SM, SP-SC) and add ''w, sparticle diameter where X% i i' after USCS group symbol dides either ''gravelly'' or ''with growthere the either ''gravelly''' or ''with gravelly'''''''''''''''''''''''''''''''''''$	with M, use is % lenotes ravel"	RELATIVE USING STAND (adap) COHESIONLESS SOIL RELATIVE DENSITY (blc VERY LOOSE 4 COMPACT 11 DENSE 3 VERY DENSE 0V (a) Soils consisting of gravel, sand plasticity, and exhibiting drained (b) Soils consisting of gravel, sand plasticity, and exhibiting drained (c) Refer to ASTM D1586 for a de overburden pressure, and is de including: material size, sample disturbance. N values are ont (d) Undrained shear strength, s,= 1	DENSITY DARD PEN ted from S ^(a) N ₁ ₆₀ 0 - 4 + -10 0 - 30 0 - 50 /ER 50 1, and silt, eithe d behavior. istics of plastic disehavior. istics of plastic disehavior. istics of plastic disehavior. istics of plastic disehavior. istics of plastic disehavior. istics of plastic disehavior. istics of plastic disease disease y an approxim //2 unconfined P) measures U SAMPLL DD, 140 lb has oon (3 in. OD Split Spoon in Hollow-St	A CONSISTEN NETRATION TE Terzaghi and P COHE CONSISTENCY VERY SOFT SOFT SOFT FIRM STIFF HARD er separately or in comb ity, and exhibiting undra lue. (N ₁) _{loc} is the N value A D6066. N values may r weight and type, depti late guide for frozen s compression strength, <u>-</u> ER ABBREVIAT ammer) o, 340 lb hammer) em Auger)	$\begin{array}{c} \textbf{ST} (\textbf{SPT}) \textbf{V} \\ \textbf{eck 1967} \\ \textbf{eck 1967} \\ \textbf{SIVE SOILS}^{(b)} \\ \textbf{SIVE SOILS}^{(b)} \\ \textbf{SIVE SOILS}^{(b)} \\ \textbf{SOILS}^{(b)} \\ $	UNCOL COMPF iTRENG 0 - 0 0.25 0.50 1.0 2.0 0.0VE g no chara mumber on and boret bil. vane (TV) amond E II (Shelby II Piston Shelby shelby te Macro ry Cutting	NFINED RESSIVE TH (TSF) ^{(d} 0.25 - 0.50 - 1.0 - 2.0 R 4.0 acteristics of rgy and factors hole measures Bit) y Tube) Sampler -Core
COMPO CO	To D 10 D 20 D 20 GM, GP-GC, SW-S GM, GP-GC, SW-S GC-GM or SC-SM. Al Abbeviations: Lor or "with sand" whi FOR DESCF (adapted f ABSENCE OF MO DAMP BUT NO VIS VISIBLE FREE WA WATER TABLE ONENT DEF DNENT S	C C C C C C C C C C C C C C	$\begin{aligned} & \sum_{c} = \frac{(D_{30})^2}{D_{10} \times D_{60}} \\ & ire dual symbols (GW-GM, ", SP-SM, SP-SC) and add "w, sp-sol, sp-sol, sp-sol, and add "w, sifty as CL-ML for GM or SN particle diameter where X% is "after USCS group symbol dies either "gravelly" or "with grandle with grandle with grandle with the set of th$	with M, use is % lenotes ravel"	RELATIVE USING STAND (adap) COHESIONLESS SOIL RELATIVE DENSITY (blc (blc VERY LOOSE LOOSE COMPACT DENSE ON (a) Soils consisting of gravel, sand plasticity, and exhibiting drainer (b) Soils consisting of gravel, sand plasticity, and exhibiting drainer (c) Refer to ASTM D1586 for a de overburden pressure, and is de including: material size, sample disturbance. N values are onlight (d) Undrained shear strength, s _u =1 SS SPT Sampler (2 in. C HD Heavy Duty Split Spc -BL Brass Liners used in CA Continous Core (Soil GS Grab Sample from Si AC Auger Charge	DENSITY PARD PEN ted from S ^(a) N ₁) ₆₀ ovws/ft) ^(c) 0 - 4 + - 10 0 - 30 0 - 50 /ER 50 / , and silt, eithe d behavior. istics of plastic finition of N valutation traise, hamme y an approxim //2 unconfined p) measures U SAMPLI DD, 140 lb ha boon (3 in. OD Split Spoon in Hollow-St urface / Test		$\begin{array}{c} \textbf{ST} (\textbf{SPT}) \textbf{V}_{l}\\ \textbf{eck 1967} \\ \textbf{eck 1967} \\ \textbf{SIVE SOILS}^{(b)} \\ \textbf{SIVE SOILS}^{(b)} \\ \textbf{SIVE SOILS}^{(b)} \\ \textbf{SOILS}^{(b)} \\$	ALUES UNCOL COMPF iTRENG 0 0.25 0.50 1.0 2.0 OVE g no chara mmer ene number of and borel jil. vane (TV) amond E II (Shelby II Piston Shelby we Macro ry Cutting	NFINED RESSIVE TH (TSF) ⁽⁶ 0.25 - 0.50 - 1.0 - 2.0 - 4.0 R 4.0 acteristics of rgy and factors nole measures Bit) y Tube) Sampler -Core

LIBRARY-ANC(8-5-14).GLB [ANC_SOIL_LEGEND] 10/23/14

Golder <u>Associates</u>

FROZEN SOIL CLASSIFICATION (ASTM D4083)							
1. DESCRIBE SOIL INDEPENDENT OF FROZEN STATE	CLASSIFY S	ON SYSTEM					
	MAJOR (GROUP		SUBGROU	JP		
	DESCRIPTION	DESIGNATION	DESCRIPTION		DESIGNATION		
				ly bonded friable	Nf		
	Segregated ice not visible by eye	N	Well	No excess ice	Nbn		
2. MODIFY SOIL DESCRIPTION BY DESCRIPTION OF			bonded	Excess ice	Nbe		
FROZEN SOIL				al ice crystals iclusions	Vx		
	Segregated ice visible by eye (ice less than 25 mm thick)	e less	Ice coatings on particles		Vc		
			Random or irregularly oriented ice formations		Vr		
			Stratified or distinctly oriented ice formations		Vs		
				iformly buted ice	Vu		
3. MODIFY SOIL DESCRIPTION BY DESCRIPTION OF	Ice greater than 25 mm	ICE		with soil lusions	ICE+soil type		
SUBSTANTIAL ICE STRATA	thick	ICE		without nclusions	ICE		

FROST DESIGN SOIL CLASSIFICATION (1)


FROST GROUP ⁽²⁾	GENERAL SOIL TYPE	% FINER THAN 0.02 mm BY WEIGHT	TYPICAL USCS SOIL CLASS
NFS ⁽³⁾ [MOA NFS]	(a) Gravels Crushed stone Crushed rock	0 to 1.5	GW, GP
	(b) Sands	0 to 3	SW, SP
PFS ⁽⁴⁾ [MOA NFS]	(a) Gravels Crushed stone Crushed rock	1.5 to 3	GW, GP
[MOA F2]	(b) Sands	3 to 10	SW, SP
S1 [MOA F1]	Gravelly soils	3 to 6	GW, GP GW-GM, GP-GM, GW-GC, GP-GC
S2 [MOA F2]	Sandy soils	3 to 6	SW, SP SW-SM, SP-SM, SW-SC, SP-SC
F1 [MOA F1]	Gravelly soils	6 to 10	GM, GC, GM-GC, GW-GM, GP-GM, GW-GC, GP-GC
F2	(a) Gravelly soils	10 to 20	GW, GP GW-GM, GP-GM, GW-GC, GP-GC
[MOA F2]	(b) Sands	6 to 15	SM, SW-SM, SP-SM, SC, SW-SC, SP-SC, SM-SC
F3	(a) Gravelly soils	Over 20	GM, GC, GM-GC
[MOA F3]	(b) Sands, except very fine silty sands	Over 15	SM, SC, SM-SC
[100, (10]	(c) Clays, PI>12		CL, CH
	(a) Silts		ML, MH, ML-CL
F4	(b) Very fine silty sands	Over 15	SM, SC, SM-SC
[MOA F4]	(c) Clays, PI<12		CL, ML-CL
	(d) Varved clays or other fine- grained banded sediments		CL or CH layered with ML, MH, ML-CL, SM, SC, or SM-SC

(1) From U.S. Army Corps of Engineers (USACE), EM 1110-3-138, "Pavement Criteria for Seasonal Frost Conditions," April 1984 (2) USACE frost groups directly correspond to frost groups listed in Municipality of Anchorage (MOA) design criteria manual (DCM), 2007; except as noted. (3) Non-frost susceptible

(4) Possibly frost susceptible, requires lab test for void ratio to determine frost design soil classification. Gravel with void ratio > 0.25 would be NFS; Gravel with void ratio < 0.25 would be S1; Sands with void ratio > 0.30 would be NFS; Sands with void ratio < 0.30</p>

FROZEN SOIL CLASSIFICATION / LEGEND

DEFINITIONS

<u>Candled Ice</u> is ice which has rotted or otherwise formed into long columnar crystals, very loosely bonded together.

<u>Clear Ice</u> is transparent and contains only a moderate number of air bubbles.

<u>Cloudy Ice</u> is translucent, but essentially sound and non-pervious

<u>Friable</u> denotes a condition in which material is easily broken up under light to moderate pressure.

<u>Granular Ice</u> is composed of coarse, more or less equidimensional, ice crystals weakly bonded together.

<u>Ice Coatings</u> on particles are discernible layers of ice found on or below the larger soil particles in a frozen soil mass. They are sometimes associated with hoarfrost crystals, which have grown into voids produced by the freezing action.

<u>Ice Crystal</u> is a very small individual ice particle visible in the face of a soil mass. Crystals may be present alone or in a combination with other ice formations.

<u>Ice Inclusions</u> are individual ice masses visible in the face of a soil mass. Inclusions may be present alone or in a combination with other ice formations.

<u>Ice Lenses</u> are lenticular ice formations in soil occurring essentially parallel to each other, generally normal to the direction of heat loss and commonly in repeated layers.

<u>Ice Segregation</u> is the growth of ice as distinct lenses, layers, veins and masses in soils, commonly but not always oriented normal to direction of heat loss.

<u>Massive Ice</u> is a large mass of ice, typically nearly pure and relatively homogeneous.

<u>Poorly-bonded</u> signifies that the soil particles are weakly held together by the ice and that the frozen soil consequently has poor resistance to chipping or breaking.

Porous Ice contains numerous voids, usually interconnected and usually resulting from melting at air bubbles or along crystal interfaces from presence of salt or other materials in the water, or from the freezing of saturated snow. Though porous, the mass retains its structural unity.

<u>Thaw-Stable</u> frozen soils do not, on thawing, show loss of strength below normal, long-time thawed values nor produce detrimental settlement.

<u>Thaw-Unstable</u> frozen soils show on thawing, significant loss of strength below normal, long-time thawed values and/or significant settlement, as a direct result of the melting of the excess ice in the soil.

<u>Well-Bonded</u> signifies that the soil particles are strongly held together by the ice and that the frozen soil possesses relatively high resistance to chipping or breaking.

> Figure A-2

10/23/14

PRO LOC	JEC ATIC	T: Kivalina Causeway T NUMBER: 1419207 DN: Kivalina, AK	RECO		CLIENT DRILLIN	SORI SUSACE SG DATE MENT: G	E : 3-14	-15			APPROX.) NAD83, AK State Plane Zoi ELEVATION: -2.34 ft COORDS: N: 1,842,646		88
	DOH	SOIL PRO	OFILE				S	AMPL			UNCORRECTED BLOWS / ft ■ 10 20 30 40	GROUND TEMPERATURE (°F)	N	NOTES
DEPTH (ft)	BORING METHOD	DESCRIPTION VEGETATION: sea ice (ground fast) lagoon ICE DEPTH: 2.5 ft.	n ICE BOND	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	IYPE	Š A	REC ATT (in.)	SALINITY (ppt) △ WATER CONTENT (%) W _P I O 20 30 40	■ 03/23/15 00:00 ■ 03/30/15 00:00 ▲ 04/11/15 00:00 ★ 04/11/15 00:00 17 19 21 23 25 27 29		TESTS 00:00 VATER EVELS
0 -		0.0 - 42.5 Very loose to medium dense, wet, black, SILTY SAND; medium to coarse-grained sand, little to some silt, trace rounded gr up to .75 inch diameter, frozen from 0-1. with 5% ice by volume as inclusions, wel bonded (SM)	l avel 5'				1 F	ID	4 6 - 3	<u>18</u> 18	• 0		ppr Grav Sand	D=0.4 m /el = 1%, d = 80%, s = 19%
		3 feet-Free water at depth					2		1 1 - 1	<u>18</u> 18	• 0	and the second se	PIC ppr	D=0.2 m
5							3		1 1 - 1	<u>18</u> 18	• 0		hea	D=0.3
	Stem Auger							S- W	4 7 7	<u>9</u> 18	• 0		Dril on 3/1	9/2015 D=0.1
10	6.625-in. OD Hollow Ste			SM				iS- .W	4 6 7	<u>9</u> 18	• 0		ppr Grav Sand	D=0.1 m d = 81% s = 19%
							6 S	S- W	5 5 10 7	<u>12</u> 24	•		PIE	D=0.1 m
15							7 S		5 1 - 2 -	<u>12</u> 24	• 0		• PIE	D=0.2 m
							8 S	S- W	6 6 8	<u>13</u> 24	• 0		Grav Sand	D=0.3 m vel = 4%, d = 70%, s = 26%
20		Log continued on next page							T					
Ġ		Golder Associates	DEPTH S DRILLING DRILLER:	G CON	TRACT			Drill	ng l	nc.	Logged: F Checked: Check da		Figure A-3	;

PRO	JEC	CT: Kivalina Causeway CT NUMBER: 1419207	ECO	([CLIENT DRILLIN	: USACE IG DATE	E : 3-14	4-15			APPROX	NAD83, AK State Plane Z ELEVATION: -2.34 ft	one 8, NA	
	METHOD	DN: Kivalina, AK SOIL PROF				<u>IENT:</u> G		AMPL			UNCORRECTED BLOWS / ft I 10 20 30 40	COORDS: N: 1,842,646 GROUND TEMPERATURE (*)		NOTES
DEI (t	BORING ME	DESCRIPTION VEGETATION: sea ice (ground fast) lagoon ICE DEPTH: 2.5 ft.	ICE BOND	NSCS	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	9/SMO	REC ATT (in.)	SALINITY (ppt) \triangle WATER CONTENT (%) W _P $\downarrow 0$	LEGEND: ● 03/23/15 00:00 ■ 03/23/15 00:00 ▲ 04/11/15 00:00 ★ 04/14/15 00:00 17 19 21 23 25 27 25		7ESTS 2/15 00:00 WATER LEVELS
- 20 - - - 25 - 	6.625-in. OD Hollow Stem Auger	0.0 - 42.5 Very loose to medium dense, wet, black, SILTY SAND; medium to coarse-grained sand, little to some silt, trace rounded grav up to .75 inch diameter, frozen from 0-1.5' with 5% ice by volume as inclusions, well bonded (SM) (Continued)	rel	SM				3S- W	1 1 1 3 3	9 24	• o			PID=0.1 ppm
- 35 -							11 S	SS-	12 13 12 13	24 24	•			PID=0.0 ppm Gravel = 4%, Sand = 48%, Fines = 48%
- 35 40							12 S	SS-	4 7 6 3	<u>6</u> 24	•			PID=0.1 ppm
G		Golder	DEPTH S DRILLING DRILLER:	CON	TRACT			v Drill	ing l	Inc.	LOGGED: CHECKED: CHECK DA		Fig	ure -3

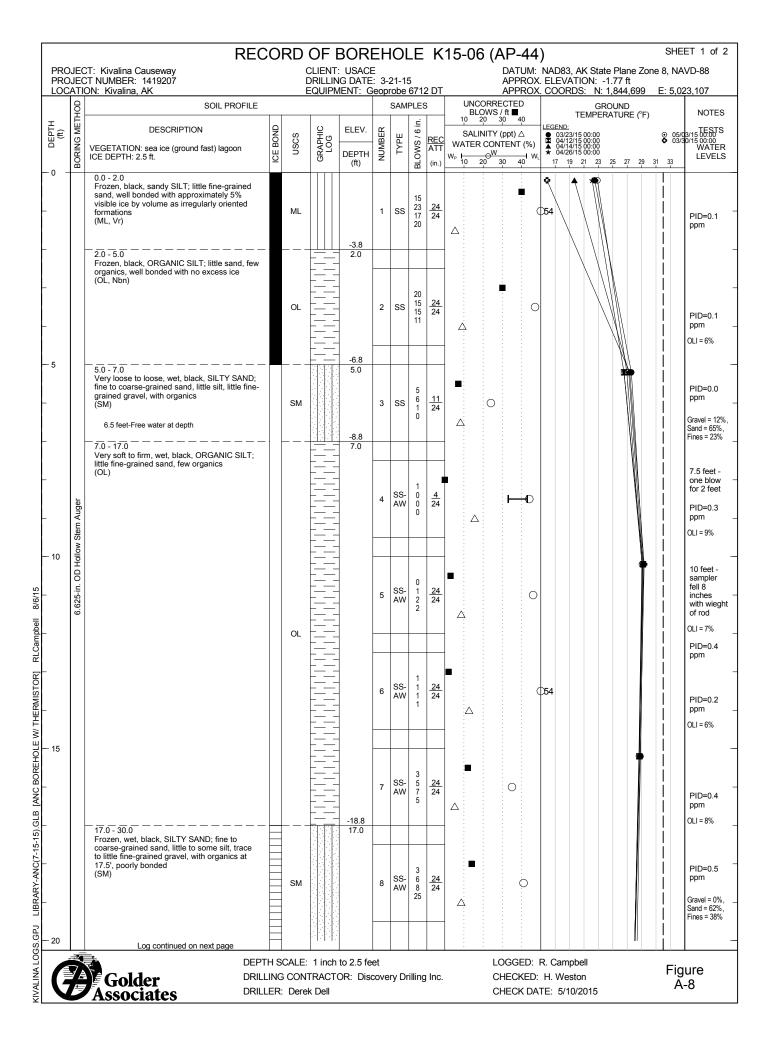
LOC	ATIC	T NUMBER: 1419207 DN: Kivalina, AK SOIL PROFILE				NG DATE MENT: G	Geopr		6712		APPRO>	K. ELEVATION: -2.34 ft K. COORDS: N: 1,842,64 GROUND TEMPERATURE		021,268
	BORING METHOD	DESCRIPTION VEGETATION: sea ice (ground fast) lagoon ICE DEPTH: 2.5 ft.	ICE BOND	NSCS	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	BLOWS / 6 in.	<u>REC</u> ATT (in.)	10 20 30 40 SALINITY (ppt) △ WATER CONTENT (%)	LEGEND: ● 03/23/15 00:00 ■ 03/30/15 00:00 ● 04/11/15 00:00 ■ 04/11/15 00:00	 ⊙ 04 ○ 05 	/26/15 00:00 /02/15 00:00 WATE LEVEL
40 –		0.0 - 42.5 Very loose to medium dense, wet, black, SILTY SAND; medium to coarse-grained sand, little to some silt, trace rounded gravel up to .75 inch diameter, frozen from 0-1.5' with 5% ice by volume as inclusions, well bonded (SM) (Continued)		SM		-44.8								
	_	42.5 - 46.0 Dense, wet, black, poorly graded SAND with silt and gravel; fine to medium-grained sand, some fine-grained gravel up to 1 inch diameter, few silt (SP-SM)		SP-SM		42.5	13	SS- AW	19 17 14 14	<u>9</u> 24	0		P	PID=0.0 ppm Gravel = 36 Sand = 569 Fines = 8%
45	w Stem Auger	46.0 - 54.5 Firm to stiff, wet, black, sandy SILT; little to some fine-grained sand, trace rounded gravel up to .75 inch diameter, trace organics			00	-48.3 46.0								
	6.625-in. OD Hollow	(ML)					14	SS- AW	11 6 5 5	<u>8</u> 24	0			PID=0.2 ppm
50				ML										
						-56.8	15	SS- AW	7 7 11 9	<u>18</u> 24	• 0			PID=0.0 ppm
55		Borehole completed at 54.5 ft. Notes: 1) Backfilled with cuttings 2) 340-pound hammer with 30 inch drop used for first three sample intervals 3) 1 inch Sch 120 PVC installed to depth 4) Borehole drilled from ground fast ice												
60		Golder DRILL Associates DRILL	H S	CALE:	1 inch	to 2.5 fe	et				LOGGED:	R. Campbell		gure

PRO LOC		T: Kivalina Causeway T NUMBER: 1419207 <u>N: Kivalina, AK</u> SOIL PROF	ILE		DRILLIN	: USACI NG DATE MENT: C	: 3-´ Geopr		6712		APPR APPR UNCORRECTED	OX. I	VAD83, AK State Plane Z ELEVATION: -3.38 ft COORDS: N: 1,842,78 GROUND	2 E: 5,0	21,391
	BORING METHOD	DESCRIPTION VEGETATION: sea ice (ground fast) lagoon ICE DEPTH: 3.6 ft.	ICE BOND	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	түре	BLOWS / 6 in.	<u>REC</u> ATT (in.)	BLOWS / ft ■ 10 20 30 40 SALINITY (ppt) △ WATER CONTENT (' W _p 0 W 10 20 30 40	6	TEMPERATURE (° EGEND: 03/23/15 00:00 ■ 03/30/15 00:00 ▲ 04/11/15 00:00 ▲ 04/11/15 00:00 ↓ 04/11/15 00:00 17 19 21 23 25 27 2	⊙ 04. ✿ 05.	NOTE 726/15 00:00 02/15 00:00 WATE LEVEL
0 -		0.0 - 4.5 Very soft to firm, wet, black, sandy SILT; lit to some fine-grained sand, frozen from 0-2 with visible ice as irregularly oriented formations, well bonded (ML)	tle '				1	SS	6 6 1 1	<u>18</u> 24		a	63		PID=0.3 ppm
		3.5 feet-Free water at depth		ML		-7.9	2	SS	1 1 2 4	<u>18</u> 24	• 0				PID=0.2 ppm
5		4.5 - 25.0 Very loose to loose, wet, black, SILTY SAN fine to coarse-grained sand, little to some s trace to few subrounded up to 3/8 inch diameter, silt content varies with depth (SM)	ID; silt,			4.5	3	SS- AW	1 7 6 4	<u>24</u> 24	•				PID=0.3 ppm Gravel = 5 ^r Sand = 87 ^o Fines = 8%
	Stem Auger						4	SS- AW	0 0 4 6	<u>9</u> 24	• 0				7.5 feet-rods fell 1' int sample interval PID=0.4 ppm
10	6.625-in. OD Hollow Stem Auger			SM			5	SS- AW	2 2 3 4	<u>8</u> 24	•				PID=0.1 ppm Gravel = 0' Sand = 76' Fines = 25'
							6	SS- AW	4 9 7 7	<u>12</u> 24	•				PID=0.0 ppm
15							7	SS- AW	7 8 7 5	<u>14</u> 24	• •				PID=0.0 ppm Gravel = 9° Sand = 82° Fines = 9%
20		Log continued on next page													
Ć		Golder		G CON	TRACT	to 2.5 fe OR: Dise		ry Dr	illing	Inc.		D: I	. Campbell H. Weston	Fiç	gure \-4

		DN: Kivalina, AK SOIL PROFILE			DRILLII EQUIPI	MENT: G	eopi		6712			RRECT	ED	COORDS: N:	1,842,782 OUND RATURE (°F)	E: 5,0	21,391 NOTE:
(#)	BORING METHOD	DESCRIPTION VEGETATION: sea ice (ground fast) lagoon ICE DEPTH: 3.6 ft.	ICE BOND	NSCS	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	TYPE	BLOWS / 6 in.	<u>REC</u> ATT (in.)	SALIN WATER (ITY (pp	t) △	LEGEND: ● 03/23/15 00:00 ■ 03/23/15 00:00 ▲ 04/11/15 00:00 ★ 04/14/15 00:00 17 19 21 23			75000 2/15 00:00 2/15 00:00 WATE LEVEL
20 —		4.5 - 25.0 Very loose to loose, wet, black, SILTY SAND; fine to coarse-grained sand, little to some silt, trace to few subrounded up to 3/8 inch diameter, silt content varies with depth (SM) (Continued)		SM			8	SS- AW	3 1 0 0	<u>5</u> 24			0				PID=0.2 ppm Gravel = 1% Sand = 69% Fines = 30% 20 feet = 5am fell in one blow 0.5- feet
25		25.0 - 28.5 Very soft to soft, wet, black, sandy SILT; some fine-grained sand, trace organics, with a very strong peat odor (ML)				-28.4 25.0	9	SS- AW	3 1 1 2	<u>18</u> 24			0				PID=0.3 ppm OLI = 5%
30	6.625-in. OD Hollow Stem Auger	28.5 - 40.0 Medium dense, wet, black, SILTY SAND with gravel; medium to coarse-grained sand, trace to little rounded gravel up to 3/4 inch diameter, little silt (SM)				-31.9 28.5	10	SS- AW	10 15 15 12	<u>12</u> 24			0				PID=0.1 ppm Gravel = 24 Sand = 59% Fines = 17%
35				SM			11	SS- AW	11 17 18 13	<u>18</u> 24	0						PID=0.0 ppm
40						-43.4 to 2.5 fe	et						GED.	R. Campbell		Fig	

PRO LOC		T: Kivalina Causeway T NUMBER: 1419207 DN: Kivalina, AK SOIL PROFILE	:	[ORILLIN	: USACE IG DATE IENT: G	: 3-1 Geopr		6712			APPROX	NAD83, AK State Plane Zor C. ELEVATION: -3.38 ft C. COORDS: N: 1,842,782 GROUND	
UEPIH (ft)	BORING METHOD	DESCRIPTION VEGETATION: sea ice (ground fast) lagoon ICE DEPTH: 3.6 ft.	ICE BOND	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER		OWS / 6 in.	REC ATT	BLOW 10 20 SALINIT WATER CO	$\begin{array}{c} S \ / \ ft \\ 30 \\ Y \ (ppt) \triangle \\ DNTENT \ (\%) \\ \frac{N}{30 \\ 40 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	TEMPERATURE (°F) <u>LEGEND:</u> ● 03/23/15 00:00 ■ 03/30/15 00:00 ■ 03/30/15 00:00	04/26/15 DESD 04/26/15 DESD 05/02/15 00:00 WATE 31 33 LEVE
40 -	Ш	40.0 - 45.0 Medium dense, wet, black, well-graded SAND with silt and gravel; medium to coarse-grained sand, some fine-grained rounded gravel up to 3/4 inch diameter, few silt (SW-SM)	1	SW-SM	° ° ° ° °	40.0	12	SS- AW	7 10 10 10	<u>10</u> 24	0			PID=0.4 ppm Gravel = 4 Sand = 51 Fines = 8%
45	l Auger	45.0-52.0			0 0 0 0 0 0 0	<u>-48.4</u> 45.0								
	6.625-in. OD Hollow Stem Auger	Firm to stiff, wet, black, sandy SILT; some fine to coarse-grained sand (ML)	3			40.0	13	SS- AW	10 5 7 7	<u>13</u> 24		0		PID=0.1 ppm
50				ML										
		Borehole completed at 52.0 ft.				-55.4	14	SS- AW	5 5 9 7	<u>18</u> 24		C		PID=0.2 ppm OLI = 5%
55		Notes: 1) Backfilled with cuttings 2) 1 inch Sch 120 PVC Installed to depth 3) Borehole drilled from ground fast ice												
60														
Ć	λ	r <u>-</u>	ILLING		TRACT	to 2.5 fe OR: Disc		y Dri	illing	Inc.			R. Campbell H. Weston	Figure A-4

		DN: Kivalina, AK SOIL PROFILE				IPIV	IENT: G		SAM	PLES		UNCORRECTED BLOWS / ft I 10 20 30 40		OUND	<u>11 E: 5,0</u> (°F)	NOTES
	BORING METHOD		ICE BOND	NSCS	GRAPHIC	LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	BLOWS / 6 in.	<u>REC</u> ATT (in.)	 SALINITY (ppt) △ /ATER CONTENT (%)	,		29 31 33	TESTS WATER LEVELS
0		0.0 - 7.0 Frozen to firm, wet, black, SILT; few to some fine-grained sand, 0.5 feet - 6 inch ice layer., well bonded visible ice as stratified formations and inclusions (ML, Vs-Vx)						1	SS	4 17 15	<u>18</u> 18		€51			PID=0.2 ppm
				ML				2	SS	6 5 4 5	<u>24</u> 24	•				PID=0.1 ppm
5		7 feet-Free water.at_depth				-	<u>-9.1</u> 7.0	3	SS	4 7 6	<u>15</u> 24	•				PID=0.3 ppm
	w Stem Auger	Very loose to loose, wet, black, poorly graded SAND with silt, fine to medium-grained sand, few to little silt, trace to few fine-grained subrounded gravel, silt content varies with depth (SP-SM)						4	SS- AW	2 5 6	<u>24</u> 24	• O				PID=0.1 ppm Gravel = 9% Sand = 83% Fines = 8%
10	6.625-in. OD Hollow Stem Auger							5	SS- AW	5 6 2 1	<u>24</u> 24	•				PID=0.4 ppm
				SP-SM				6	SS- AW	3 4 6 7	<u>12</u> 24	•				PID=0.1 ppm Gravel = 39 Sand = 859 Fines = 129
15								7	SS- AW	6 6 9	<u>11</u> 24	• 0				PID=0.2 ppm
								8	SS- AW	7 8 4 7	<u>18</u> 24	Ō				PID=0.4 ppm Gravel = 89 Sand = 82% Fines = 109
20		Log continued on next page					to 2.5 fe					LOGGED:				


	ATIC	T NUMBER: 1419207 DN: Kivalina, AK				NG DATE MENT: 0	Geopre	obe 6	6712				APPROX APPROX		N	: 1,8	42,9	11	E: 5,0	<u>21,536</u>
	BORING METHOD	SOIL PROFILE DESCRIPTION VEGETATION: sea ice (ground fast) lagoon ICE DEPTH: 2.5 ft.	ICE BOND	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	MBER	SAMF I	BLOWS / 6 in.	REC ATT	10 SAL WATEF		ft ■ 40 opt) △ ENT (%)	<u>LEGEND:</u> 17 1	MPE		URE	. ,	31 33	NOTES TESTS WATEF LEVELS
20 –		7.0 - 22.5 Very loose to loose, wet, black, poorly graded SAND with silt; fine to medium-grained sand, few to little silt, trace to few fine-grained subrounded gravel, silt content varies with depth (SP-SM) (<i>Continued</i>)	_	SP-SM		-24.6			Ш											-
25	6.625-in. OD Hollow Stem Auger	Loose to medium dense, wet, black, SILTY SAND; medium to coarse-grained sand, little silt, with a 1 foot layer of silt at 25 feet (SM)						SS- AW	9 4 2 1	<u>11</u> 24		0								PID=0.2 ppm
	6.625-in. OD			SM				SS- AW	7 2 3 4	<u>12</u> 24		0								PID=0.2 ppm Gravel = 6% Sand = 64% Fines = 30%
30						-33.6	11	SS- AW	6 9 1	<u>11</u> 24	L)							PID=0.1 ppm Gravel = 1% Sand = 80% Fines = 19%
35		Borehole completed at 31.5 ft. Notes: 1) Backfilled with cuttings 2) Borehole drilled from ground fast ice																		
40	*					n to 2.5 fe OR: Dis							GGED:	R. Cam H. We					 	gure

PRO. . <u>OC/</u>		T: Kivalina Causeway T NUMBER: 1419207 N: Kivalina, AK SOIL PROFILI		0	RILLIN	: USACE NG DATE MENT: G	: 3-1 Geopr		6712		UNC		APPRC	DX. I	ELE	VÁT	101	N: -' N: '	1.85	5 ft 13,3		,	NAVD-88 5,021,953
(tt)	BORING METHOD	DESCRIPTION VEGETATION: sea ice (ground fast) lagoon ICE DEPTH: 2.4 ft.	ICE BOND	USCS	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	S / 6 in.	REC ATT (in.)	10 10	OWS / 20 30 NITY (p CONT	ft ■ 40 ppt) △ ENT (%	5)	EGEN 17	<u>D:</u>		IPER	εΑτι	JRE	. ,	31 33	NOTES TESTS WATEI LEVEL
,		0.0 - 3.0 Frozen, black, sandy SILT; some fine-grained sand, well bonded with approximately less than 5% visible ice by volume as inclusions (ML, Vx)	1	ML					6														
							1	HD	6 6	18	-	C)										PID=0.1 ppm
	-	3.0 - 6.0 Loose, moist to wet, black, SILTY SAND; medium to coarse-grained sand, little to some				-4.9	-																PID=0.1 ppm
;		silt (SM) 3.5 feet-Free water at depth		SM			2	HD	4 3 1	<u>18</u> 18			- - - - - - - - - - - - - - - - - - -	Œ	53								4 feet of heaving sand Gravel = 5% Sand = 75% Fines = 20%
		6.0 - 22.5	_			-7.9 6.0							-										PID=0.2 ppm
		poorly graded SAND with silt; fine to medium grained sand, few silt, trace to few fine- grained gravel (SP-SM)	-				3	HD	2 3 7	<u>18</u> 18	•	0											Gravel = 0% Sand = 91% Fines = 8%
	w Stem Auger						4	HD	1 6 10	<u>18</u> 18		Ō											PID=0.3 ppm Gravel = 9% Sand = 85%
0	6.625-in. OD Hollow																						Fines = 6% Restart Drill hole on 3/21/201
				SP-SM			5	SS- AW	6 10 11 17	<u>18</u> 24	C)											PID=0.1 ppm
5								SS-	7	12													PID=0.2 ppm
						· · · · ·	6	SS- AW	13 10 8	<u>12</u> 24													Gravel = 12' Sand = 77% Fines = 11%
							7	SS- AW	10 14 40	<u>18</u> 18	0		A	>>									PID=0.2 ppm
0	2	Log continued on next page			1 inch		et					10		. P		met						li	
		<u>r-</u>				to 2.5 fe OR: Dise		y Dri	illing	Inc.			gged Eckei									F	igure A-6

PRO	JEC	NT: Kivalina Causeway NT NUMBER: 1419207 DN: Kivalina, AK		C	RILLIN	: USACI IG DATE <u>IENT: G</u>	: 3-1			DT		A	PPROX	. ELE	VAT	NON	N: -'	1.85	ft		NAVD-88 5,021,953
	DOHI	SOIL PROFILE					s	AMP			UNCO BLOV	RREC NS / ft 30	TED			TEM	GR IPER	ROUN	D RE (°	F)	NOTE
ц (#) (#)	BORING METHOD	DESCRIPTION VEGETATION: sea ice (ground fast) lagoon ICE DEPTH: 2.4 ft.	ICE BOND	NSCS	GRAPHIC LOG	ELEV. DEPTH (ft)	MBE	ТҮРЕ	Š	REC ATT (in.)	SALINI WATER C	TY (pp	ot) ∆ ENT (%)	LEGEN		21	23	25	27 2	9 31 3	TEST WATE LEVEI
20 –		6.0 - 22.5 Medium dense to very dense, wet, black, poorly graded SAND with silt; fine to medium- grained sand, few silt, trace to few fine- grained gravel (SP-SM) (Continued)		SP-SM																	
	iger	22.5 - 26.0 Loose, wet, black, SILTY SAND; fine to medium-grained sand, little silt, trace fine- grained gravel, trace organics (SM) 24 feet-4 inch organic layer		 SM		-24.4 22.5		SS- AW	10 1 7 7	<u>16</u> 24		C									PID=0.5 ppm Gravel = 49 Sand = 729 Fines = 249 OLI = 4%
25	.625-in. OD Hollow Stem Auger	26.0 - 31.5 Very soft to stiff, wet, black, ORGANIC SILT; some fine-grained sand, little organics (OL)				-27.9 26.0	_														
	6.62			OL				SS- AW	0 1 1 1	<u>18</u> 24			0								27.5 fee rod sank inches (sand at top of spoon) PID=0.4 ppm
30		Borehole completed at 31.5 ft.				-33.4	10	SS- AW	7 4 10 8	<u>17</u> 24			Ō								PID=0.3 ppm OLI = 15%
35		 Backfilled with cuttings 340-pound hammer with 30 inch drop used for first four sample intervals Borehole drilled from ground fast ice 																			
~																					
40																					
Ć		Golder	LING		RACT	to 2.5 fe OR: Dise		y Dril	lling	Inc.		CHE	GGED: ECKED: ECK DA	Η. V	Vest	on				F	igure A-6

		F	RECC	RD	OF	BO	RE	HO	LE	K	K15-05 (AP-43) SHEET 1 of 2
PRC	JEC	T: Kivalina Causeway T NUMBER: 1419207			DRILL	NT: US	ATE:				DATUM: NAD83, AK State Plane Zone 8, NAVD-88 APPROX. ELEVATION: -1.4 ft
		DN: Kivalina, AK SOIL PRO	FILE		EQUI	PMENT	: Ge		e 671 MPLE		UNCORRECTED GROUND
HL	METH	DESCRIPTION	9	1	<u>u</u>	ELE	EV.	r.	6 in.		BLOWS / ft ■ TEMPERATURE (°F) NOTES 10 20 30 40 SALINITY (ppt) △ LEGEND: TESTS
DEPTH (ft)	BORING METHOD	VEGETATION: sea ice (ground fast) lagoon ICE DEPTH: 2.7 ft.		USCS	GRAPHIC	DEF (f	PTH t)	TYPE	BLOWS / 6 in.	REC ATT (in.)	
- 0 -		0.0 - 2.0 Frozen, gray, SILTY SAND; fine-grained a little silt, trace fine-grained gravel, with a inch thick ice lens at 0.5', well bonded wit approximately 20-30% visible ice by volu as stratified formations and inclusions (SM, Vs-Vx)	4- th	SM				1 SS	8 33 28	<u>18</u> 18	18 >> PID=0.2 ppm 0 Gravel = 1%, Sand = 74%, Fines = 25% Sand = 74%, Fines = 25%
-	-	2.0 - 11.0 Frozen from 2'-7' to very soft, moist, blac sandy SILT; little fine-grained sand, well bonded with no excess ice (ML, Nbn)	 k,			<u>-3</u> 2.	0	2 55	12	<u>24</u> 24	24 O
- 5									19		
-				ML				3 55	5 4 7 5	<u>24</u> 24	24 24 0 PID=0.5 ppm
-		7 feet-Free water at depth						4 SS	0	24	unfrozen at 7 feet 7.5 feet - rod sank 4-6 inches
-	low Stem Auger							4 AV	V 2 3	24	Pite Pite Pite Pite Pite Pite Pite Pite
	6.625-in. OD Hollow	11.0 - 17.5 Frozen, wet, black, SILTY SAND; fine to medium-grained sand, some silt, poorly bonded (SM)				-12		5 SS AV		<u>24</u> 24	■ PID=0.1 ppm Gravel = 0%, Sand = 69%, Fines = 31%
				SM				6 SS AV	9 - 13 V 14 20	24	24 24 24 24
15								7 SS AV	- 13 V 38/3	9	9 9 0 >>■
											PID=0.2 ppm
		17.5 - 30.0 Frozen from 17.5'-21',loose to very dense wet, black, SILTY SAND with gravel; fine medium-grained sand, little sit, little to so subrounded gravel up to .75 inch diamete gravel from 25-30.5', poorly bonded (SM)	to me	SM	0 0 0 0 0 0	-18 17	.5	8 SS AV	i- 11 V 39/4	" <u>10</u> 10	ID >> Gravel = 16% Sand = 67% Fines = 17% VID VID VID VID PID=0.3 ppm
		Log continued on next page Golder Associates	DEPTH S DRILLIN DRILLEF	G CON	ITRAC	TOR:			Drillin	g Inc	LOGGED: R. Campbell nc. CHECKED: H. Weston CHECK DATE: 5/10/2015

			F	RECO	RD	OF	BOR	EH	IOI	E	K	15-05 (AP-	43)					SH	EET 2 of 2
PF	ROJ	JEC	T: Kivalina Causeway T NUMBER: 1419207			DRILLI	I: USAC	: 3-				APPF	ROX	. EL	EVAT	ION:	-1.4	4 ft	one 8, N	
	_		DN: Kivalina, AK SOIL PRO	FILE		EQUIP	MENT: C	1	robe SAMI			UNCORRECTED)	. cc	DORD			<u>843,929</u> UND	E: 5,0	
E		BORING METHOD	DESCRIPTION			0						BLOWS / ft 10 20 30 40		LEG	T END:			TURE (°F	⁻)	NOTES
DEPTH	(11)	NGN	VEGETATION: sea ice (ground fast) lagoon	ICE BOND	uscs	GRAPHIC LOG	ELEV.	NUMBER	ТҮРЕ	BLOWS / 6 in.	<u>REC</u> ATT	SALINITY (ppt) △ WATER CONTENT	(%)							TESTS WATER
		BOR	ICE DEPTH: 2.7 ft.			R R	DEPTH (ft)	R	F	BLOV	(in.)	WATER CONTENT W _P		1	7 19	21 2	3 25	5 27 29	31 33	LEVELS
— 20 — —		er	17.5 - 30.0 Frozen from 17.5'-21',loose to very dense wet, black, SILTY SAND with gravel; fine medium-grained sand, little silt, little to so subrounded gravel up to .75 inch diamete gravel from 25-30.5', poorly bonded (SM) (Continued)	to				9	SS- AW	9 4 9 10	<u>12</u> 24									- - PID=0.1 ppm
-		n Aug				0														·· -
- 25		6.625-in. OD Hollow Stem Auger			SM		5													25 feet - drill rig chatter -
										40	_		>>							Gravel = 38%,
_						0		10	SS- AW	40 30/1"	<u>7</u> 7	0								Sand = 47%, Fines = 15%
																			i	PID=0.0 ppm
-																			ļ	PID=0.0 -
						i r	Ś													ppm
- 30					SP-SI		-31.4 30.0 -31.9	11	SS- AW	50/6"	6	0	>>							Gravel = 46%, Sand = 48%, Fines = 6%
KIVALINA.LOGS.GPJ LIBRARY-ANC(7-15-15).GLB (ANC BOREHOLE W/ THERMISTOR) RLCampbell 8/6/15			with silt and gravel; medium to coarse-gra sand, some fine-grained gravel up to 3/4 (sP-SM) Borehole completed at 30.5 ft. Notes: 1) Backfilled with cuttings 2) Borehole drilled from ground fast ice																	-
- 35 																				-
BOR																				
ANC																				
GLB																				_
15)																				
																				-
-Y-AN																				
IBKA																				-
5 																			i	
KIVALINA LU			Golder Associates	DEPTH S DRILLING DRILLER	G CON	ITRAC			ry Dr	illing	Inc.	LOGGE CHECK CHECK	ED:	H.	Westo	on			Fię <i>P</i>	gure A-7

RECORD OF BOREHOLE K15-06 (AP-44) SHEET 2 of														ET 2 of 2				
PF	PROJECT: Kivalina Causeway CLIENT: USACI PROJECT NUMBER: 1419207 DRILLING DATE											A	DATUM: NAD83, AK State Plane 2 APPROX. ELEVATION: -1.77 ft					
	_							SAMPLES				UNCORRECTED			G	GROUND		
DEPTH		METH	DESCRIPTION	Ð		Q	ELEV.	н		6 in.	_		BLOWS / ft ■ 10 20 30 40 SALINITY (ppt) △			erature (°F)	0.05/0	NOTES
DEF	-	BORING METHOD	VEGETATION: sea ice (ground fast) lagoon ICE DEPTH: 2.5 ft.	ICE BOND	nscs	GRAPHIC LOG	DEPTH	NUMBER	ТҮРЕ	BLOWS / 6	<u>REC</u> ATT		ENT (%)		3/23/15 00:00 4/12/15 00:00 4/14/15 00:00 4/26/15 00:00			TESTS 3/15 00:00 0/15 00:00 WATER LEVELS
— 20 —		BC	17.0 - 30.0 Frozen, wet, black, SILTY SAND; fine to coarse-grained sand, little to some silt, trac to little fine-grained gravel, with organics at 17.5', poorly bonded (SM) (Continued)				(ft)			BL	(in.)		40 	17		25 27 29		
- 25		OD Hollow Stem Auger			SM			9	SS- AW	14 17 25 7	<u>16</u> 24	¢ ∧				-		- PID=0.2 ppm _
		6.625-in. OD						10	SS- AW	21 50/4"	<u>8</u> 10	Δ Ο	~					- PID=0.1 ppm Gravel = 11%, Sand = 64%, - Fines = 25%
- 30		-	30.0 - 31.0 Frozen, wet, black, well-graded GRAVEL v sand; fine-grained gravel up to 3/4 inch		GW		4	11	SS- AW	13 37/6"	<u>12</u> 12	0	>>					PID=0.0 ppm Gravel = 55%, Sand = 42%,
			diameter, some fine to coarse-grained san trace silt, poorly bonded (GW) Borehole completed at 31.0 ft. Notes: 1) Backfilled with cuttings 2) 1 inch Sch 120 PVC installed to depth 3) Borehole drilled from ground fast ice															Fines = 4%
KIVALINA LC			Golder	DEPTH SCALE: 1 inch to 2.5 feet DRILLING CONTRACTOR: Discovery Drilling Inc. DRILLER: Derek Dell							CH	LOGGED: R. Campbell CHECKED: H. Weston CHECK DATE: 5/10/2015				Figi A-	ure 8	

APPENDIX B LABORATORY DATA

Testing Report Summary

	Date Sample Recv'd	4/6/2015
Client	Golder Associates W.O. #	34316
Project	USACE Kivalina Causeway Lab #	Varies
Location	See below	

All results will be posted to the website for your access and convenience. Samples will be kept for 30 days before being disposed. Please contact us if you would like the remaining material returned.

Lab ID	Sample ID	Test Performed	Test Method	Resu	lts
				Liquid Limit	
324	K15-01, Sample 15,			Plastic Limit	
524	Depth 52.5-54.5'			Plasticity Index	Nonplastic
				USCS	Silt
				Liquid Limit	
325	K15-02, Sample 11,			Plastic Limit	
525	Depth 0-2'			Plasticity Index	Nonplastic
				USCS	Silt
				Liquid Limit	
327	K15-02, Sample 3,			Plastic Limit	
527	Depth 5-7'			Plasticity Index	Nonplastic
				USCS	Silt
		Standard Test Methods		Liquid Limit	
339	K15-03, Sample 1,	for Liquid Limit, Plastic	ASTM D4318	Plastic Limit	
000	Depth 0-1.5'	Limit, and Plasticity Index of Soils		Plasticity Index	Nonplastic
		index of Solis		USCS	Silt
				Liquid Limit	
350	K15-04, Sample 1,			Plastic Limit	
000	Depth 1-2.5'			Plasticity Index	Nonplastic
				USCS	Silt
				Liquid Limit	
361	K15-05, Sample 2,			Plastic Limit	
001	Depth 2.5-4.5'			Plasticity Index	Nonplastic
				USCS	Silt
				Liquid Limit	40
363	K15-05, Sample 4,			Plastic Limit	33
000	Depth 7.5-9.5'			Plasticity Index	7
				USCS Silt or	Organic Silt

Testing Report Summary (cont'd)

	Date Sample Recv'd	4/6/2015	
Client	Golder Associates W.O.	. # 34316	
Project	USACE Kivalina Causeway Lab	o # Varies	
Location	See below		

Lab ID	Sample ID	Test Performed	Test Method	Resu	lts
				Liquid Limit	-
371	K15-06, Sample 1,			Plastic Limit	-
0/1	Depth 0-2'			Plasticity Index	Nonplastic
		Standard Taat Mathada		USCS	Silt
		Standard Test Methods		Liquid Limit	43
374	K15-06, Sample 4,	for Liquid Limit, Plastic Limit, and Plasticity	ASTM D4318	Plastic Limit	33
574	Depth 7.5-9.5'	Index of Soils		Plasticity Index	10
				USCS Silt or	Organic Silt
				Liquid Limit	
377	K15-06, Sample 7,			Plastic Limit	
311	Depth 15-17'			Plasticity Index	Nonplastic
				USCS	Silt

If you have questions regarding this summary report or the test procedures, please contact us.

María Maria E. Kampsen, P.E. Laboratory Supervisor

		Testing Sum	-
	Date S	ample Recv'd	4/6/2015
Client	Golder Associates	W.O. #	34316
Project	USACE Kivalina Causeway	Lab #	see below
Location	Varies		

All results will be posted to the website for your access and convenience. Samples will be kept for 30 days before being disposed. Please contact us if you would like the remaining material returned.

Sample ID	Test Performed	Test Method	Organic %
K15-01 Depth 47.5-49.5' (Lab No. 323)			4.1
K15-02 Depth 25-27' (Lab No. 333)			5.1
K15-02 Depth 50-52' (Lab No. 338)			4.7
K15-04 Depth 22.5-24.5' (Lab No. 357)			4.0
K15-04 Depth 29.5-31.5' (Lab No. 359)	Moisture, Ash & Organic Matter of	ASTM D2974	15.2
K15-06 Depth 2.5-4.5' (Lab No. 372)	Peat Materials	ASTM D2974	5.8
K15-06 Depth 7.5-9.5' (Lab No. 374)			8.5
K15-06 Depth 10-12' (Lab No. 375)			6.5
K15-06 Depth12.5-14.5' (Lab No. 376)			6.3
K15-06 Depth 15-17' (Lab No. 377)			7.5

María

Maria E. Kampsen, P.E. Laboratory Supervisor

Test Summary Report

Repo	orting	W	orks	heet													Sar	nple Date	4/6	/2015
Client							Go	lder	Ass	ocia	tes							W.O.#	34316	
Project	t					US	ACE	Kiva	alina	a Ca	usev	vay				•		Lab No.	varies	
Locatio	on							V	arie	S						•				
Lab #	Lab # Boring Depth Percent Grain												Mo	oisture						
	TH	SA	From (Feet)	To (Feet)	Gravel	Sand	-#200	Max	Shape	Sand	Dry Str.	ΡΙ	USCS Symbol	Color	Free Water	Organics	Ice	Remarks	Wet Dry	%
310	K15-01	1	0	1.5	1	80	19	1/4"	-	м	М	NP	SM	Black		Trace		1.13	34.02 26.89	28
311	K15-01	2	2.5	4	0	80	20	s	_	м	М	NP	SM	Black		Trace		1.15	62.9 51.14	24
312	K15-01	3	5	6.5	5	80	15	3/8"	-	м	-	NP	SM	Black		Trace		1.16	20.8	31
		4		9								NP						1.15	37.05	
313	K15-01		7.5	9	5	80	15	1/4"	-	М	М	NP	SM	Black		Trace		1.17	30.27 33.05	23
314	K15-01	5	10	11.5	0	81	19	S	-	М	L	NP	SM	Black		None		1.15	25.95 30.63	29
315	K15-01	6	12.5	14.5	0	85	15	S	-	М	L	NP	SM	Black		None		4 47	25.03	23
316	K15-01	7	15.0	17	0	85	15	1/4"	-	М	L	NP	SM	Black		None		1.17	26.99 21.42	28
317	K15-01	8	17.5	19.5	4	70	26	1/4"	-	м	L	NP	SM	Black		Trace		1.18	22.64 18.25	26
318	K15-01	9	22.5	24.5	0	85	15	1/4"	-	м	н	NP	SM	Black		None		1.15	24.74 20.12	24
319	K15-01	10	27.5	29.5	0	85	15	1/4"	-	М	L	NP	SM	Black		None		1.16	30.47 24.85	24
320	K15-01	11	32.5	34.5	4	48	48	1/4"	-	F/M	Н	NP	SM	Black		None		1.15	26.62 21.17	27
321	K15-01	12	37.5	39.5	25	60	15	1"	_	F/M	L	NP	SM	Black		None		1.16	24.97 21.18	19
322	K15-01	13	42.5	44.5	36	56	8	1"	-	F/M	L	NP	SP-SM	Black		None		1.15	16.97 15.15	13
323	K15-01	14	47.5	49.5	15	35	50	1/2"	-	F/M	VH	М	CL	Gray		None		1.15	21.19 17.03	26
324	K15-01	15	52.5	54.5	0	5	95	s	-	F/M	Н	NP	ML	Gray		None		1.17	17.62 13.69	31

Test Summary Report (cont'd)

Repo	orting Worksheet Sample Date									nple Date	4/6/2015									
Client							C	Golde	ər A	ssoc	ciate	s				_		W.O.#	34	4316
Project	t					ι	JSAC	CE K	ival	ina (Caus	sewa	у			-		Lab No.	varies	
_ocatio	n							S	iee l	belo	w					•				
Lab #	Borir	ıg	Dej	pth	F	Perce	nt	(Grain	n									Mo	oisture
													USCS		er				Wet	
	TH	SA	From	То	Gravel	Sand	-#200	Max	Shape	Sand	Dry Str.	Id	Symbol	Color	Free Water	Organics	Ice	Remarks	Dry	%
325	K15-02	1	0	2	0	5	95	S	-	F	М	NP	ML	Black/Brown		None		1.16	15.88 10.19	63
326	K15-02	2	2.5	4.5	0	20	80	S	-	F	Н	NP	ML	Gray		None		1.15	20.15 15.36	34
327	K15-02	3	5	7	5	87	8	1/4"	-	F/M	L	NP	SP-SM	Black		None		1.16	26.66 22.04	22
328	K15-02	4	7.5	9.5	0	50	50	s	-	F	М	NP	ML	Black		None		1.13	20.09 15.1	36
329	K15-02	5	10	12	0	75	25	s	-	F	L	NP	SM	Black		None		1.13	27.58 21.49	30
330	K15-02	6	12.5	14.5	15	50	35	1/4"	-	F/M	L	NP	SM	Black		None		1.14	17.23 14.64	19
331	K15-02	7	15.0	17	9	82	9	1/4"	-	F/M	L	NP	SP-SM	Black		None		1.14	36.65 31.08	19
332	K15-02	8	20.0	22	1	69	30	s	-	F	L	NP	SM	Black		None		1.16	15.39 11.55	37
333	K15-02	9	25	27	0	25	75	s	-	F	М	NP	ML	Black		None		1.17	24.07 17.32	42
334	K15-02	10	30	32	24	59	17	F/C	-	F/M	L	NP	SM	Black		None		1.16	28.03 19.57	46
335	K15-02	11	35	37	50	35	15	F/C	-	F/M	L	NP	GM	Black		None		1.15	30.79 27.68	12
336	K15-02	12	40	42	41	51	8	F/C	-	F/M	L	NP	SW-SM	Black		None		1.17	23.74 21.5	11
337	K15-02	13	45	47	20	30	50	F/C	-	F/M	Н	NP	GM	Gray		None		1.17	29.56 22.83	31
338	K15-02	14	50	52	0	5	95	s	-	м	VH	L	ML	Gray		None		1.17	21.73 17.47	. 26
339	K15-03	1	0	1.5	0	15	85	s	_	м	М	NP	ML	Black/Brown		None		1.14	12.1 8.39	51

Test Summary Report (cont'd)

Repo	orting	W	orks	heet	t												Sar	nple Date	4/6	/2015
Client							(Golde	er A	ssoc	iate	s						W.O.#	34	4316
Projec	t					ι	USAC	CE K	lival	ina (Caus	sewa	у					Lab No.	varies	
Locatio	on							S	see l	belo	N		-			•				
Lab #	Bori	ng	De	pth	H	Perce	ent	(Grai	n									Mo	oisture
													USCS		H				Wet	
	TH	SA	From	To	Gravel	Sand	-#200	Max	Shape	Sand	Dry Str.	ΡΙ	Symbol	Color	Free Water	Organics	Ice	Remarks	Dry	%
																		1.16	27.26	
340	K15-03	2	2.5	4.5	0	15	85	S	-	М	М	NP	ML	Black/Brown		None		1.15	20.07 38.15	38
341	K15-03	3	5	7	5	75	20	1/4"	-	F/M	L	NP	SM	Black		None		_	31.43	22
																		1.15	25.66	
342	K15-03	4	7.5	9.5	9	83	8	1/4"	-	F/M	L	NP	SP-SM	Black		None			21.74	19
0.40	1415 00	_	4.0	40	0.5		0.5											1.13	18.73	05
343	K15-03	5	10	12	25	50	25	1/4"	-	F/M	L	NP	ML	Black/Brown		None		1.13	15.16 17.41	25
344	K15-03	6	12.5	14.5	3	85	12	1/4"	-	F/M	L	NP	SP-SM	Black/Brown		None			14.57	21
																		1.16	20.81	
345	K15-03	7	15.0	17	5	80	15	1/4"	-	F/M	L	NP	SM	Brown		None		4.40	16.83	25
346	K15-03	8	17.5	19.5	8	82	10	1/4"		F/M	L	NP	SW-SM	Black/Brown		None		1.16	14.7 12.48	20
340	K15-05	0	17.5	19.5	0	02	10	1/4	-	F7 IVI	L	INF	300-300	DIACK/DIUWII		none		1.14	15.65	20
347	K15-03	9	22.5	24.5	10	60	30	1/2"	-	F/M	L	NP	SM	Black		None			12.47	28
																		1.16	23.5	
348	K15-03	10	27.5	29.5	6	64	30	1/4"	-	F/M	М	NP	SM	Black		None		1.15	19.1	25
349	K15-03	11	29.5	31.5	1	80	19	s	_	s	М	NP	SM	Black		None		1.15	24.71 19.27	30
545	110-00		23.5	01.0		00	13	0	_	0	141		OW	Diack		None		1.16	29.4	
350	K15-04	1	1	2.5	5	10	85	1/4"	-	s	н	L	ML	Black		None			22.93	30
																		1.14	28.47	
351	K15-04	2	3.5	5	5	75	20	1/4"	-	F/M	L	NP	SM	Black		None		4.40	19.06	53
352	K15-04	3	6	7.5	1	91	10	1/4"	-	F/M	L	NP	SP-SM	Black		None		1.16	13.32 10.98	24
																		1.15	17.47	
353	K15-04	4	8.5	10	9	85	6	3/58'	-	F/M	L	NP	SP-SM	Black		None			14.76	20
254	K1E 04	F	10 5	145	10	05	F	1/4"					6 D	Pleak		None		1.15	19.41	47
354	K15-04	5	12.5	14.5	10	85	5	1/4"	-	F/M	L	NP	SP	Black		None			16.7	17

Test Summary Report

(cont'd)

Reporting Worksheet Sample Date 4/6/2015 Client W.O.# 34316 **Golder Associates USACE Kivalina Causeway** Lab No. Project varies Location See below Lab # Boring Depth Grain Moisture Percent USCS Wet ree Water Organics Str. Gravel #200 Shape From Sand Sand Мах Dry \mathbf{I}_{0} S Color TH SA Ы Symbol Remarks Dry % 1.14 20.96 355 K15-04 6 15 17 12 77 11 1/2" F/M L NP SW-SM Brown None 18.05 17 1.15 15.25 356 K15-04 7 17.5 19 15 80 5 3/8" F/M L NP SP Black None 13.41 15 1.14 27.36 K15-04 8 22.5 72 24 3/8" NP 22.51 357 24.5 4 F/M Μ SM Black None 23 1.16 23.93 358 K15-04 9 27.5 29.5 0 5 95 s Μ н NP ML Black None 16.88 45 1.15 14.29 K15-04 29.5 31.5 0 5 95 S NP Black 10.53 40 359 10 Μ Μ ML Trace 1.15 15.66 K15-05 0.0 1.5 74 25 s NP 360 1 1 Μ L SM Black Trace 11.64 38 1.15 23.34 361 K15-05 2 2.5 4.5 0 5 95 s Μ н L ML Gray None 17.99 32 1.17 21.48 K15-05 0 95 s 15.52 362 3 5.0 7 5 Μ Μ L ML Gray None 42 1.15 31.72 K15-05 0 5 95 s VH 23.43 37 363 4 7.5 9.5 Μ L ML Gray None 1.15 30.72 364 K15-05 5 10 12 0 69 31 s Μ L NP SM Black None 24.39 27 1.15 18.49 K15-05 40 3/4" NP 15.05 365 6 12.5 14.5 10 50 F/M Μ SM Black None 25 1.15 26.53 K15-05 7 20 40 40 1/4" F/M NP SM 21.69 366 15 17 L Brown None 24 1.14 24.16 367 K15-05 8 17.5 19.5 16 67 17 1/4" F/M L NP SM Brown None 19.98 22 17.12 1.16 13.5 K15-05 50 50 s NP 368 9 22.5 24.5 0 Μ Μ ML Black None 29 1.15 20.45 369 K15-05 10 27.5 28.1 38 47 15 NP SM Black 17.56 18 1" F/M н None

Test Summary Report

Repo	orting	Wo	orks	sheet													Sam	ple Date	4/6/2015	
Client							(Gold	er A	ssoc	ciate	s						W.O.#	34	4316
Projec	t					l	JSA	CE K	lival	ina (Caus	sewa	у					Lab No.	varies	
Locatio								S	See I	oelov	w		•					•		
T 1 <i>1</i>									. .											•
Lab #	Bori	ng	De	pth	1	Perce	nt	(Graiı	n			USCS						Wet	oisture
	TH	SA	From	To	Gravel	Sand	-#200	Max	Shape	Sand	Dry Str.	Id	Symbol	Color	Free Water	Organics	lce	Remarks	Dry	%
					Ŭ	•1			•1	•1						Ŭ		1.14	20	
370	K15-05	11	30	30.5	46	48	6	3/4"	-	М	L	NP	SP-SM	Brown		None			18.07	11
																		1.14	13.72	
371	K15-06	1	0	2	0	5	95	S	-	Μ	Μ	NP	ML	Black		None			9.31	54
070	1415 00			4.5		_	0.5	~						D I 1				1.14	18.6	47
372	K15-06	2	2.5	4.5	0	5	95	S	-	Μ	L	NP	ML	Black		None		1.16	12.98 34.69	47
373	K15-06	3	5	7	12	65	23	1/4"	-	F/M	м	NP	SM	Black		None			28.22	24
0.0		0	Ű				20	., .		. ,			0	Diaton				1.16	22.33	
374	K15-06	4	7.5	9.5	0	5	95	s	-	М	Н	L	ML	Gray		None			15.83	44
																		1.15	15.97	
375	K15-06	5	10.0	12	0	5	95	S	-	М	VH	L	ML	Gray		None			11.33	46
																		1.13	14.89	
376	K15-06	6	12.5	14.5	0	5	95	S	-	Μ	VH	L	ML	Gray		None		1.10	10.09	54
077	1415 00	-	45.0	47		_	0.5							0				1.16	18.93	05
377	K15-06	7	15.0	17	0	5	95	S	-	Μ	Н	NP	ML	Gray		None		1.15	14.31 22.34	35
378	K15-06	8	17.5	19.5	0	62	38	s	-	м	L	NP	SM	Black		None			16.15	41
0.0	1110 00	0	11.0	10.0	Ŭ	02	00				-		- Cim	Diatin		Hono		1.17	11.07	
379	K15-06	9	22.5	24.5	5	75	20	1/4"	-	F/M	L	NP	SM	Black/Brown		None			8.78	30
																		1.14	21.45	
380	K15-06	10	27.5	28.3	11	64	25	3/8"	-	F/M	L	NP	SM	Black		None			16.82	30
																		1.14	11.26	
381	K15-06	11	30	31	55	41	4	1"	-	F/M	L	NP	GW	Brown		None			10.66	6

If you have questions regarding this summary report or the test procedures, please contact us.

María Maria E. Kampsen, P.E. Laboratory Supervisor

Conductivity Report Summary

		Date Sample Recv'd	6/9/2014
Client	Golder Associates	W.O. #	33956
Project	USACE Kivalina Causeway	Lab #	Varies
Location	See below		

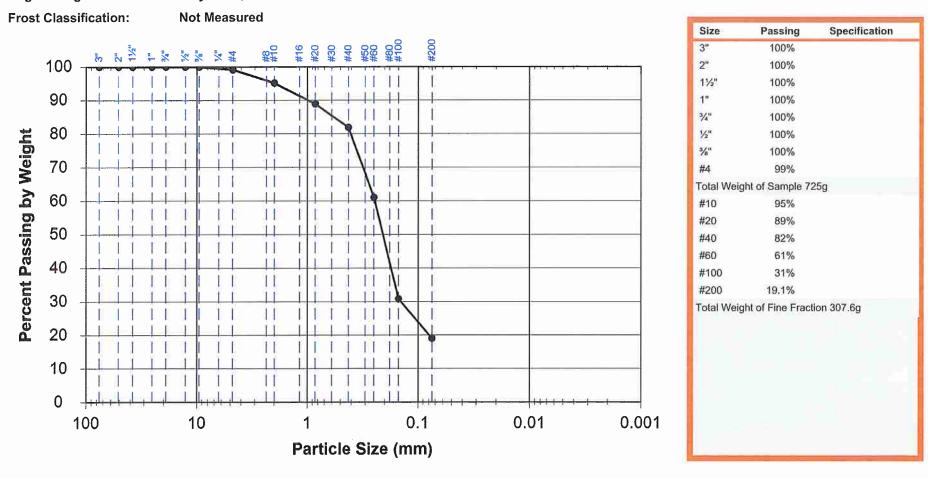
Lab ID	Sample ID	Test Performed	Test Method	Parts Per Thousand (ppt)
339	K15-03, Sample 1, 0'-1.5'			4.5
340	K15-03, Sample 2, 2.5'-4.5'			2.3
341	K15-03, Sample 3, 5'-7'			3.3
342	K15-03, Sample 4, 7.5'-9'			2.7
343	K15-03, Sample 5, 10'-12'			4.9
344	K15-03, Sample 6, 12.5'-14.5'			3.9
345	K15-03, Sample 1, 15'-17'			4.4
346	K15-03, Sample 1, 17.5'-19.5'			5.5
347	K15-03, Sample 9, 22.5'-24.5'			4.9
348	K15-03, Sample 10, 27.5'-29.5'	Conductivity	In House	8.4
349	K15-03, Sample 11, 29.5'-31.5'	Conductivity	Procedure	8.0
371	K15-06, Sample 1, 0'-2'			5.3
372	K15-06, Sample 2, 2.5'-4.5'			9.2
373	K15-06, Sample 3, 5'-7'			8.2
374	K15-06, Sample 4, 7.5'-9.5'			15.6
375	K15-06, Sample 5, 10'-12'			8.6
376	K15-06, Sample 6, 12.5'-14.5'			12.7
377	K15-06, Sample 7, 15'-17'			5.2
378	K15-06, Sample 8, 17.5'-19.5'			8.6
379	K15-06, Sample 9, 22.5'-24.5'			7.1

Conductivity Report Summary (cont'd)

	Date Sample	e Recv'd	6/9/2014
Client	Golder Associates	W.O. #	33956
Project	USACE Kivalina Causeway	Lab #	Varies
Location	See below		

Parts Per Thousand

Lab ID	Sample ID	Test Performed	Test Method	(ppt)
380	K15-06, Sample 10, 27.5'-28.3'	Conductivity	In House	7.8
381	K15-06, Sample 11, 30'-31'	Conductivity	Procedure	10.8


If you have questions regarding this summary report or the test procedures, please contact us.

María Maria E. Kampsen, P.E. Laboratory Supervisor

Location: Test Borehole K15-01 Sample 1 Depth 0'-1.5'

Engineering Classification: Silty Sand, SM

Golder Associates Inc.

USACE Kivalina Causeway

Client:

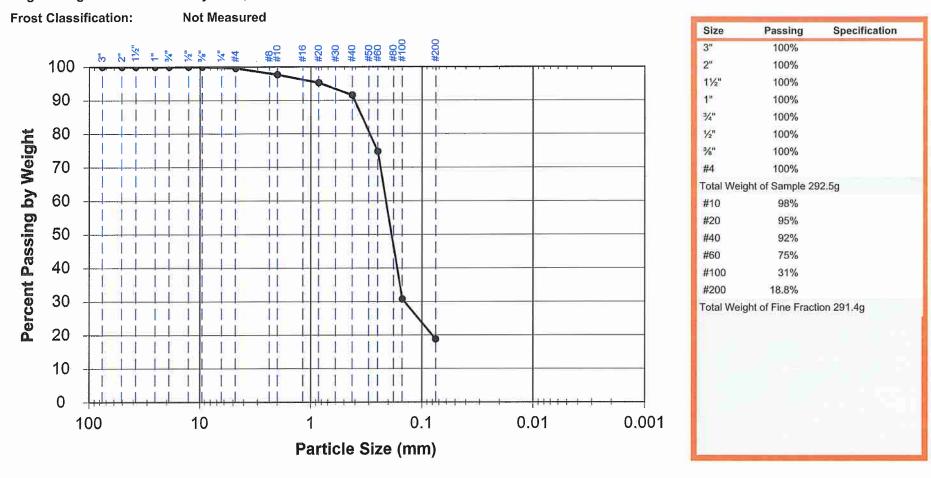
Project:

Work Order: A34316

 Lab Number
 2015-310

 Received
 4/6/2015

 Reported
 4/21/2015


Particle Size Distribution

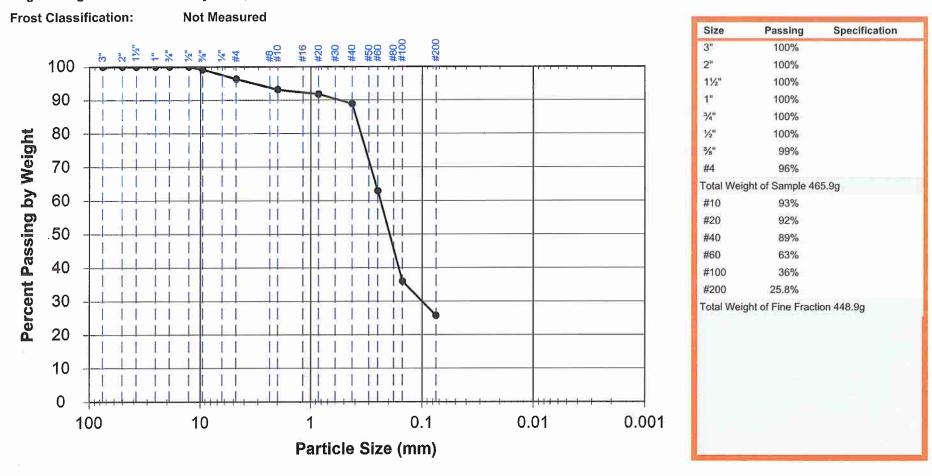
ASTM D422

Location: Test Borehole K15-01 Sample 5 Depth 10'-11.5'

Engineering Classification: Silty Sand, SM

Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution


ASTM D422

Lab Number	2015-314	
Received	4/6/2015	
Reported	4/21/2015	

Location: Test Borehole K15-01 Sample 8 Depth 17.5'-19.5'

Engineering Classification: Silty Sand, SM

Golder Associates Inc.

USACE Kivalina Causeway

Client:

Project:

Work Order: A34316

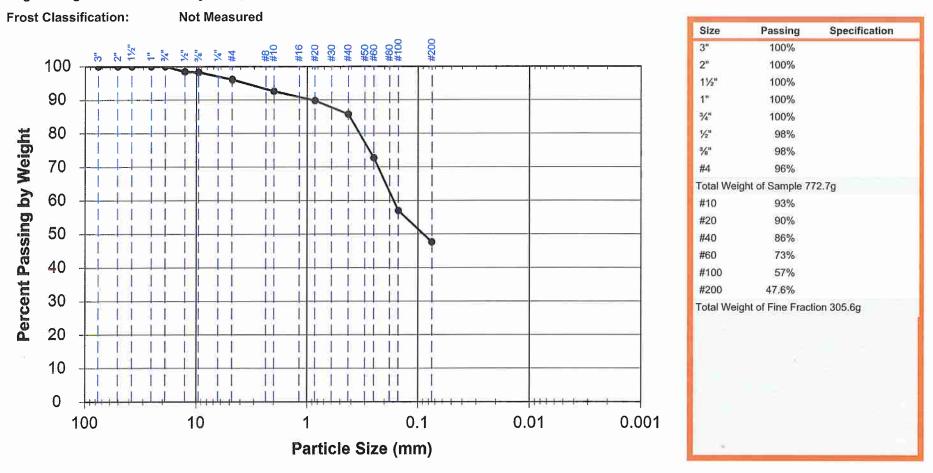
Particle Size Distribution

ASTM D422

4/6/2015

4/21/2015

Lab Number 2015-317


Received

Reported

Location: Test Borehole K15-01 Sample 11 Depth 32.5'-34.5'

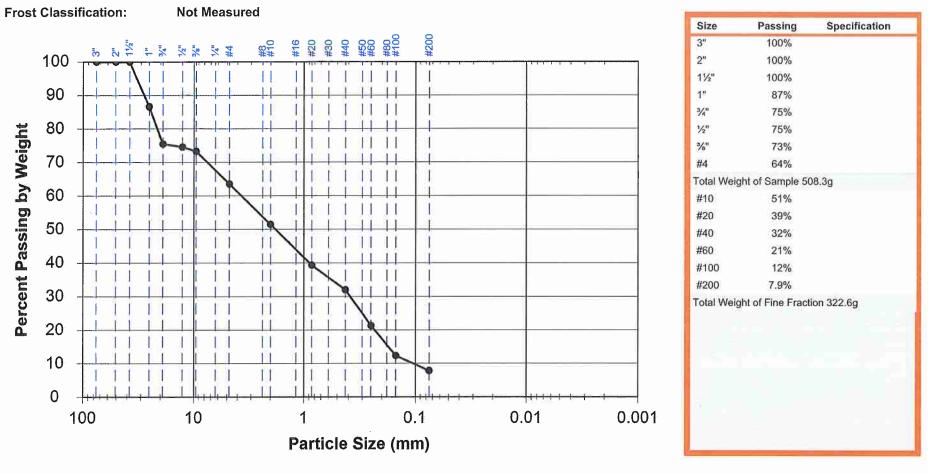
Engineering Classification: Silty Sand, SM

Client: Golder Associates Inc. Project: USACE Kivalina Causeway Work Order: A34316

Particle Size Distribution

ASTM D422

Lab Number	2015-320	
Received	4/6/2015	
Reported	4/21/2015	

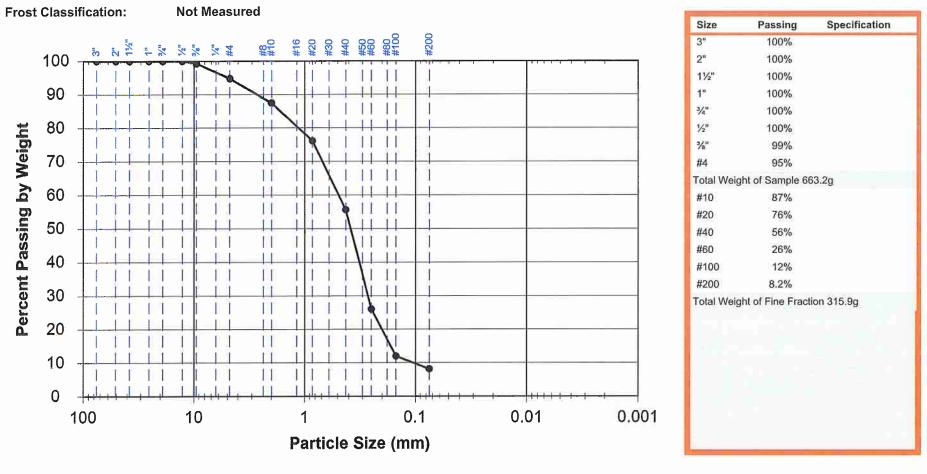

Location: Test Borehole K15-01 Sample 13 Depth 42.5'-44.5' Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution

ASTM D422

Lab Number	2015-322	
Received	4/6/2015	
Reported	4/21/2015	

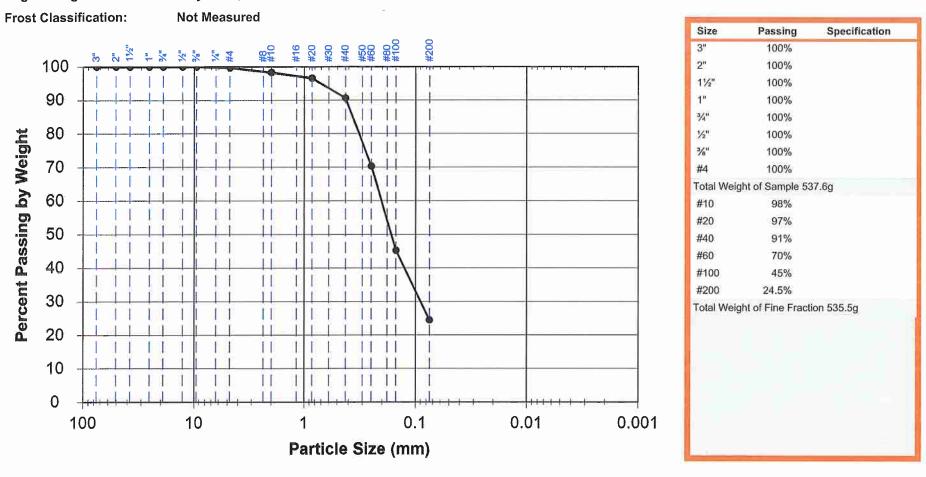
Engineering Classification: Poorly Graded Sand with Silt and Gravel, SP-SM


Location: Test Borehole K15-02 Sample 3 Depth 5'-7' Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution

ASTM D422

Lab Number	2015-327	
Received	4/6/2015	
Reported	4/21/2015	


Engineering Classification: Poorly Graded Sand with Silt, SP-SM

Location: Test Borehole K15-02 Sample 5 Depth 10'-12'

Engineering Classification: Silty Sand, SM

Golder Associates Inc.

USACE Kivalina Causeway

Particle Size Distribution

ASTM D422

4/6/2015

4/21/2015

Lab Number 2015-329

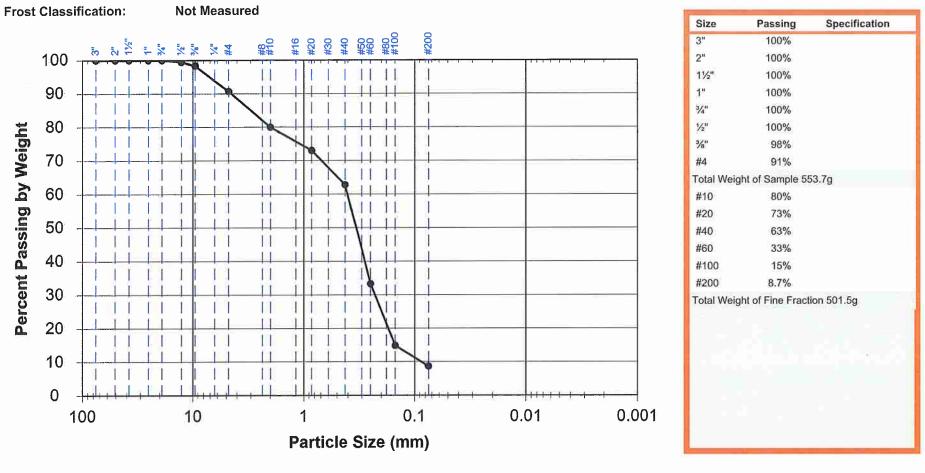
Received

Reported

Client:

Project:

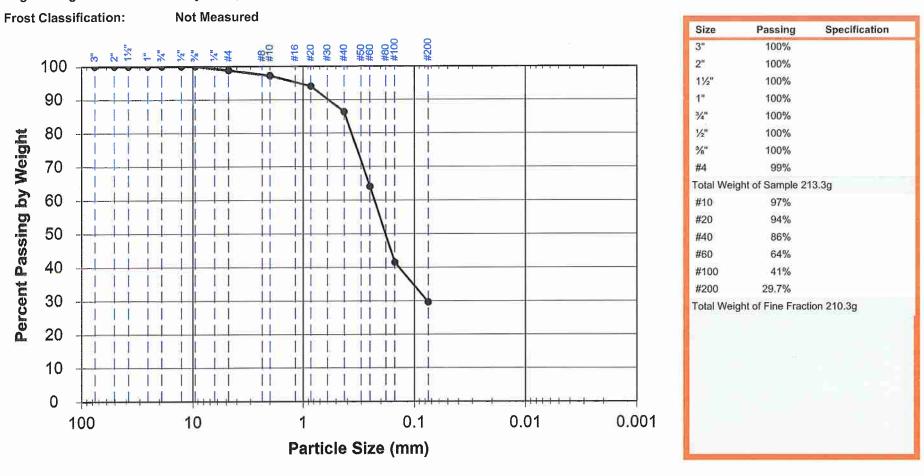
Work Order: A34316


Location: Test Borehole K15-02 Sample 7 Depth 15'-17' Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution

ASTM D422

Lab Number	2015-331
Received	4/6/2015
Reported	4/21/2015


Engineering Classification: Poorly Graded Sand with Silt, SP-SM

Location: Test Borehole K15-02 Sample 8 Depth 20'-22'

Engineering Classification: Silty Sand, SM

Golder Associates Inc.

USACE Kivalina Causeway

Client:

Project:

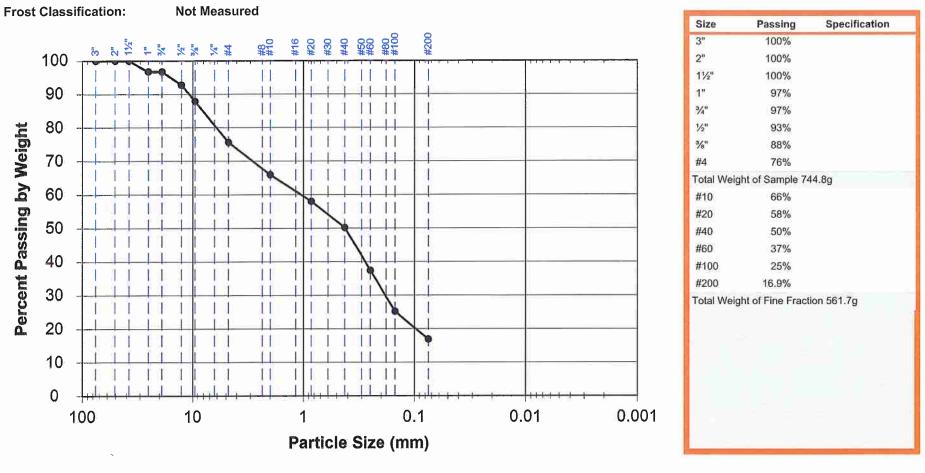
Work Order: A34316

Maria E. Kampsen, P.E • 4041 B Street • Anchorage • Alaska • 99503 • 907/562-2000 • Fax 907/563-3953

Particle Size Distribution

ASTM D422

Lab Number	2015-332	
Received	4/6/2015	
Reported	4/21/2015	


Location: Test Borehole K15-02 Sample 10 Depth 30'-32' Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution

ASTM D422

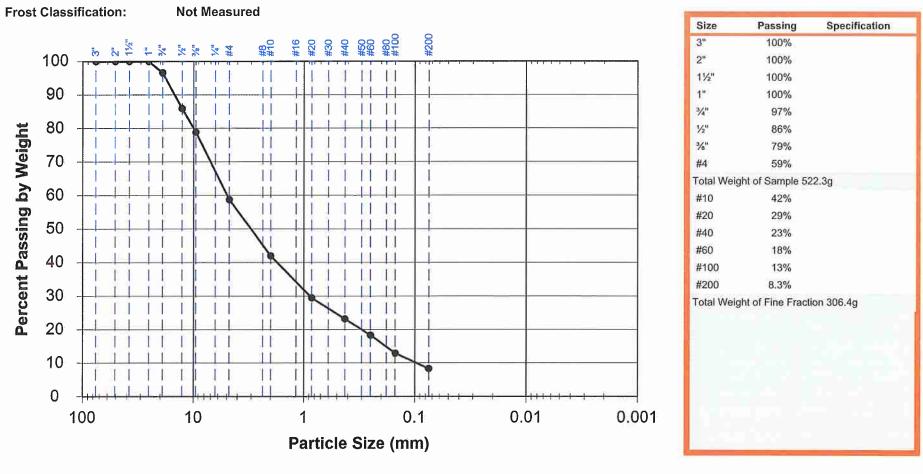
Lab Number	2015-334	
Received	4/6/2015	
Reported	4/21/2015	

Engineering Classification: Silty Sand with Gravel, SM

Location: Test Borehole K15-02 Sample 12 Depth 40'-42'

Particle Size Distribution

ASTM D422


Lab Number	2015-336	
Received	4/6/2015	
Reported	4/21/2015	

Engineering Classification: Well Graded Sand with Silt and Gravel, SW-SM

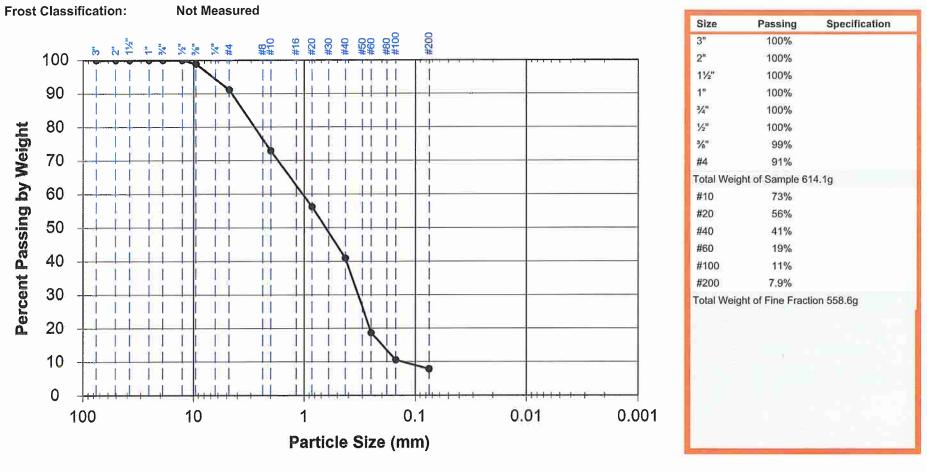
Client:

Project:

Work Order: A34316

Golder Associates Inc.

USACE Kivalina Causeway

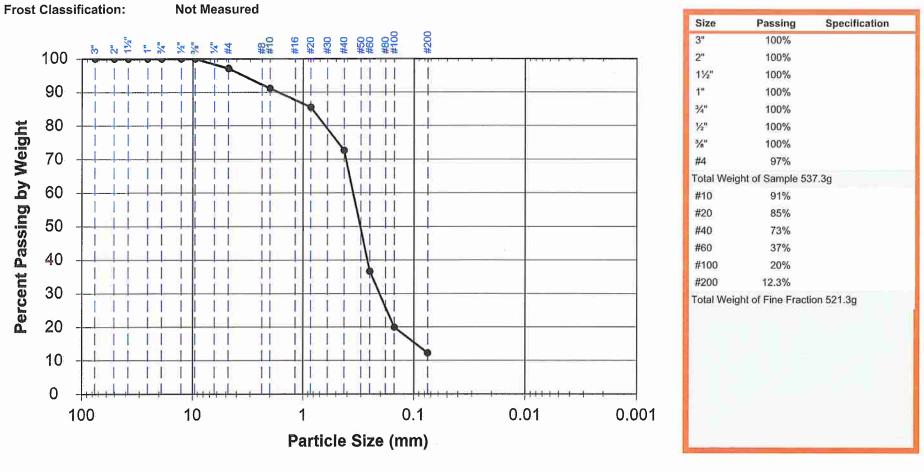

Location: Test Borehole K15-03 Sample 4 Depth 7.5'-9.5' Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution

ASTM D422

Lab Number	2015-342	
Received	4/6/2015	
Reported	4/21/2015	I

Engineering Classification: Poorly Graded Sand with Silt, SP-SM

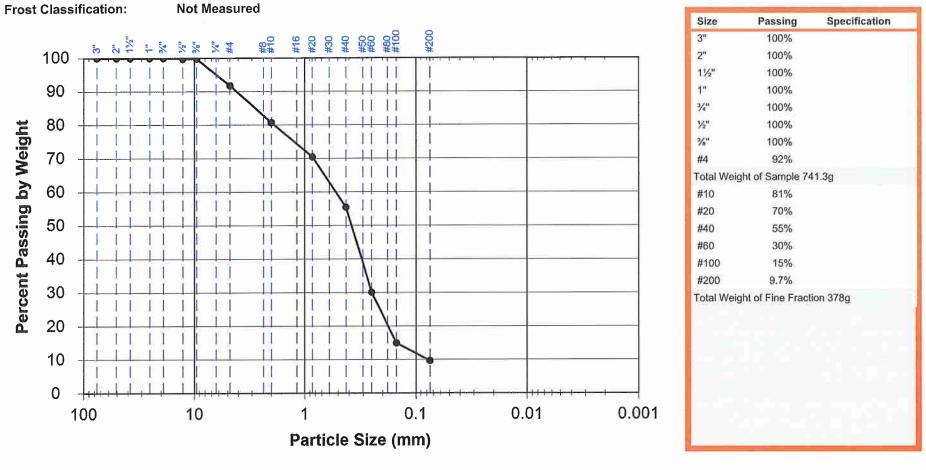

Location: Test Borehole K15-03 Sample 6 Depth 12.5'-14.5' Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution

ASTM D422

Lab Number	2015-344
Received	4/6/2015
Reported	4/21/2015

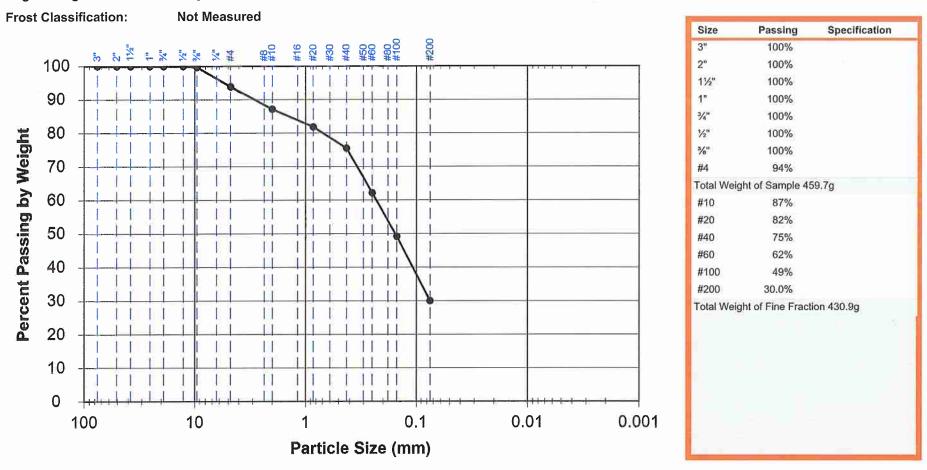
Engineering Classification: Poorly Graded Sand with Silt, SP-SM


Location: Test Borehole K15-03 Sample 8 Depth 17.5-19.5' Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution

ASTM D422

Lab Number	2015-346	
Received	4/6/2015	
Reported	4/21/2015	


Engineering Classification: Well Graded Sand with Silt, SW-SM

Location: Test Borehole K15-03 Sample 10 Depth 27.5'-29.5'

Engineering Classification: Silty Sand, SM

Golder Associates Inc.

USACE Kivalina Causeway

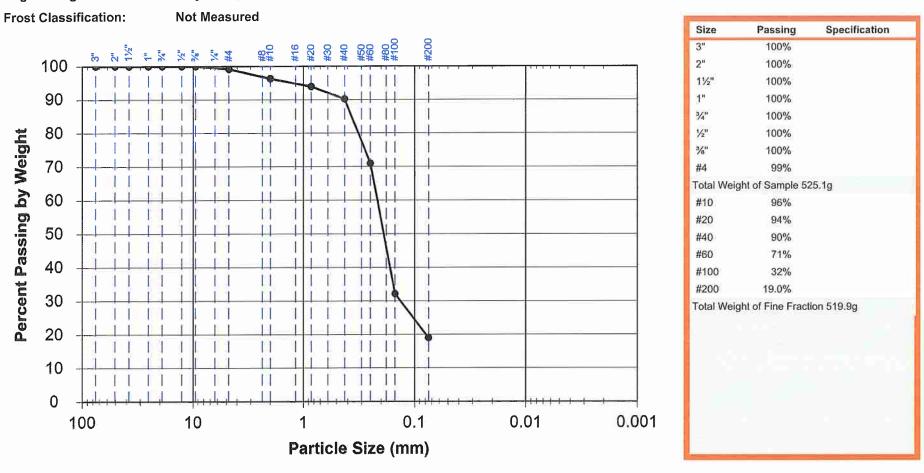
Client:

Project:

Work Order: A34316

Maria E. Kampsen, P.E • 4041 B Street • Anchorage • Alaska • 99503 • 907/562-2000 • Fax 907/563-3953

Particle Size Distribution


ASTM D422

Lab Number	2015-348
Received	4/6/2015
Reported	4/21/2015

Location: Test Borehole K15-03 Sample 11 Depth 29.5'-31.5'

Engineering Classification: Silty Sand, SM

Golder Associates Inc.

USACE Kivalina Causeway

Client: Project:

Work Order: A34316

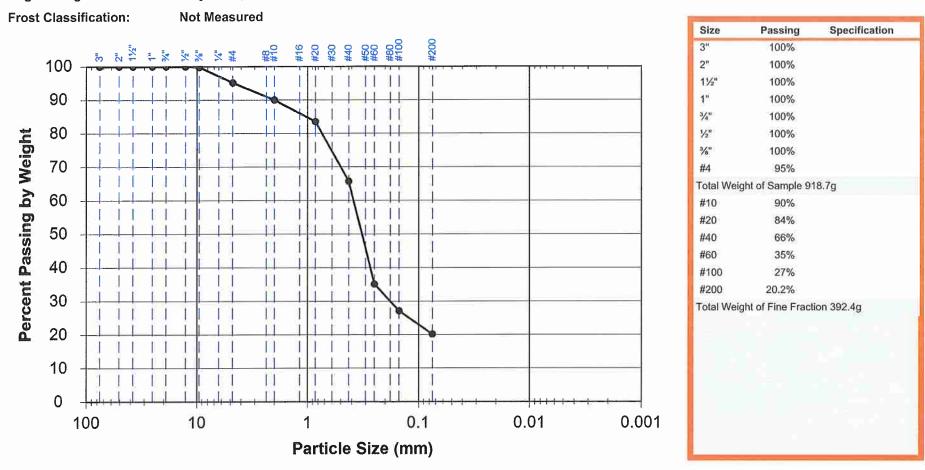
Particle Size Distribution

ASTM D422

4/6/2015

4/21/2015

Lab Number 2015-349


Received

Reported

Location: Test Borehole K15-04 Sample 2 Depth 3.5'-5'

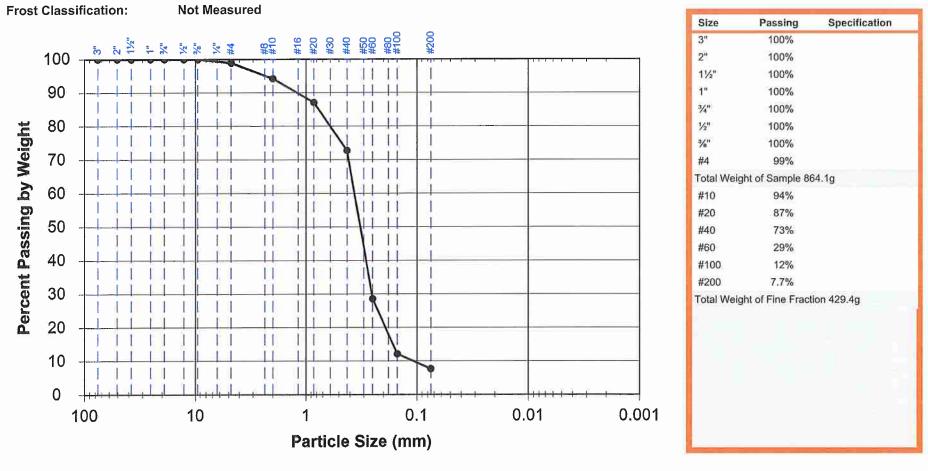
Engineering Classification: Silty Sand, SM

Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution

ASTM D422

Lab Number	2015-351
Received	4/6/2015
Reported	4/21/2015

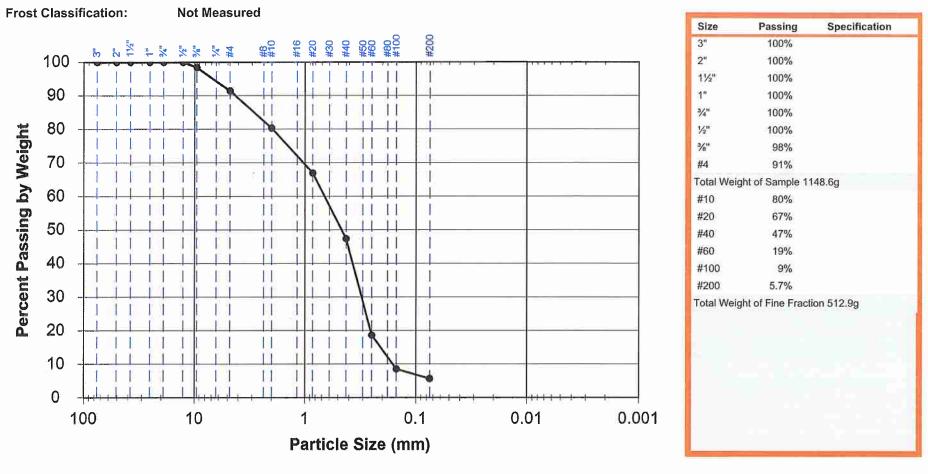

Location: Test Borehole K15-04 Sample 3 Depth 6'-7.5' Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution

ASTM D422

Lab Number	2015-352	1
Received	4/6/2015	
Reported	4/21/2015	

Engineering Classification: Poorly Graded Sand with Silt, SP-SM


Location: Test Borehole K15-04 Sample 4 Depth 8.5'-10' Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

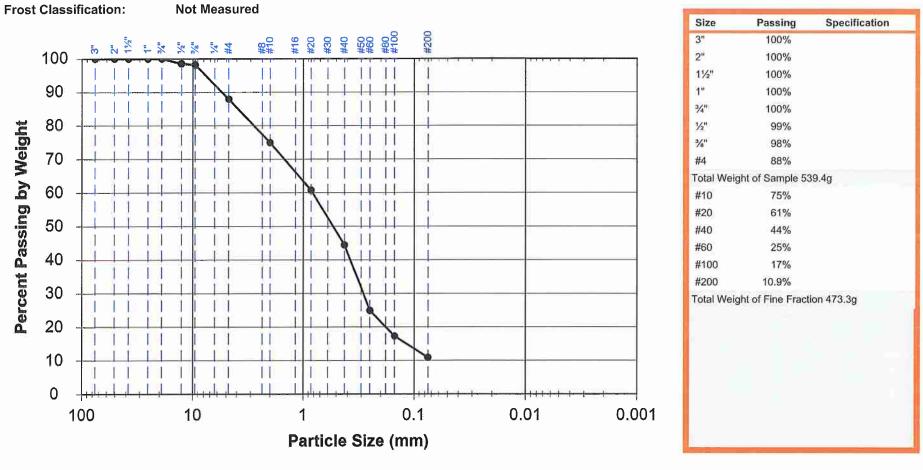
Particle Size Distribution

ASTM D422

Lab Number	2015-353
Received	4/6/2015
Reported	4/21/2015

Engineering Classification: Poorly Graded Sand with Silt, SP-SM

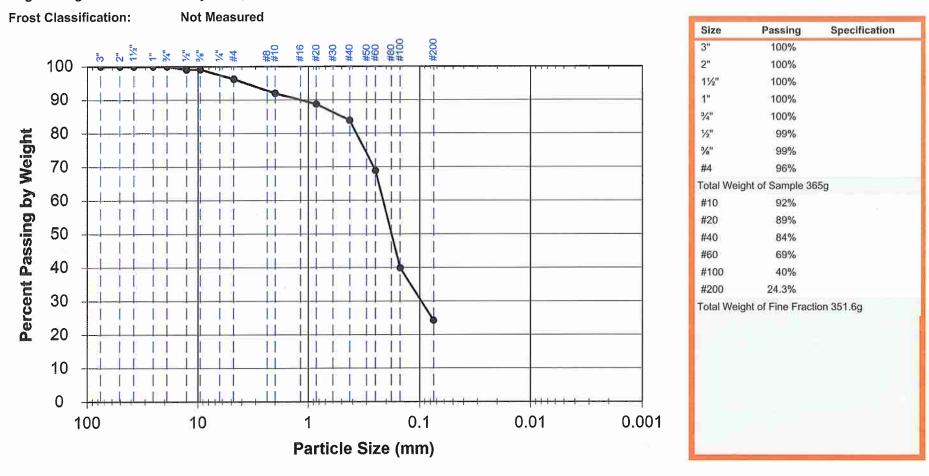
Location: Test Borehole K15-04 Sample 6 Depth 15'-17'


Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution

ASTM D422

Lab Number	2015-355	
Received	4/6/2015	
Reported	4/21/2015	

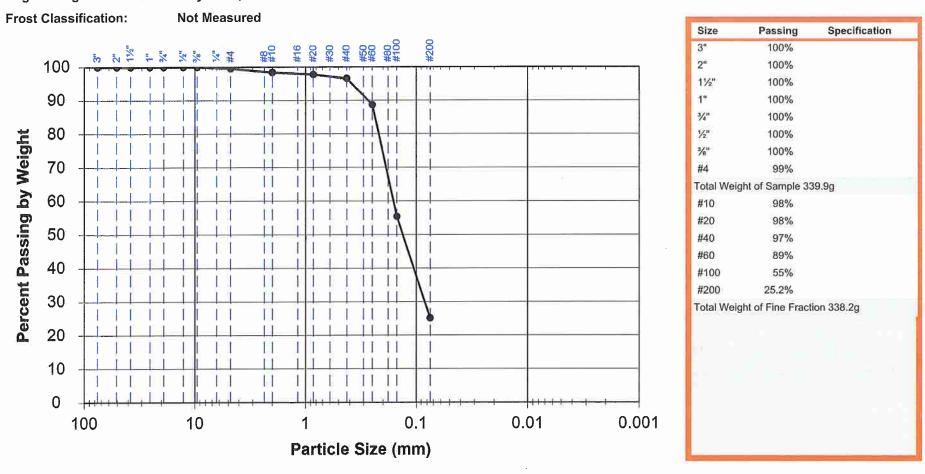

Engineering Classification: Well Graded Sand with Silt, SW-SM

Location: Test Borehole K15-04 Sample 8 Depth 22.5'-24.5'

Engineering Classification: Silty Sand, SM

Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution


ASTM D422

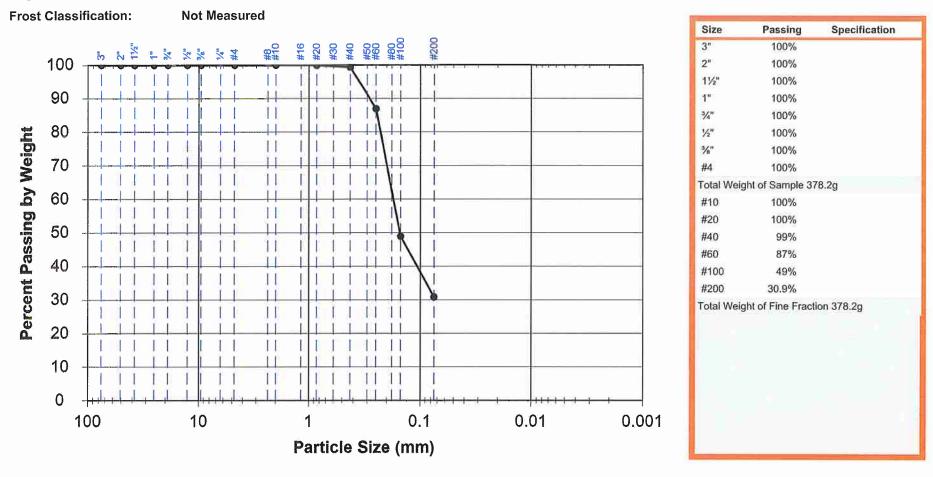
Lab Number	2015-357	
Received	4/6/2015	
Reported	4/21/2015	

Location: Test Borehole K15-05 Sample 1 Depth 0'-1.5'

Engineering Classification: Silty Sand, SM

Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution


ASTM D422

Lab Number	2015-360	
Received	4/6/2015	
Reported	4/21/2015	

Location: Test Borehole K15-05 Sample 5 Depth 10'-12'

Engineering Classification: Silty Sand, SM

Golder Associates Inc.

USACE Kivalina Causeway

Client:

Project:

Work Order: A34316

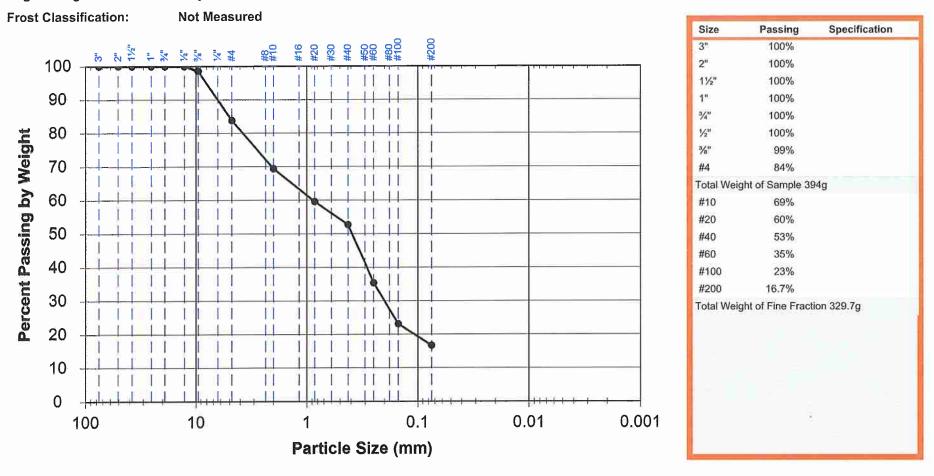
Particle Size Distribution

ASTM D422

4/6/2015

4/21/2015

Lab Number 2015-364


Received

Reported

Location: Test Borehole K15-05 Sample 8 Depth 17.5'-19.5'

Engineering Classification: Silty Sand with Gravel, SM

Golder Associates Inc.

USACE Kivalina Causeway

Client:

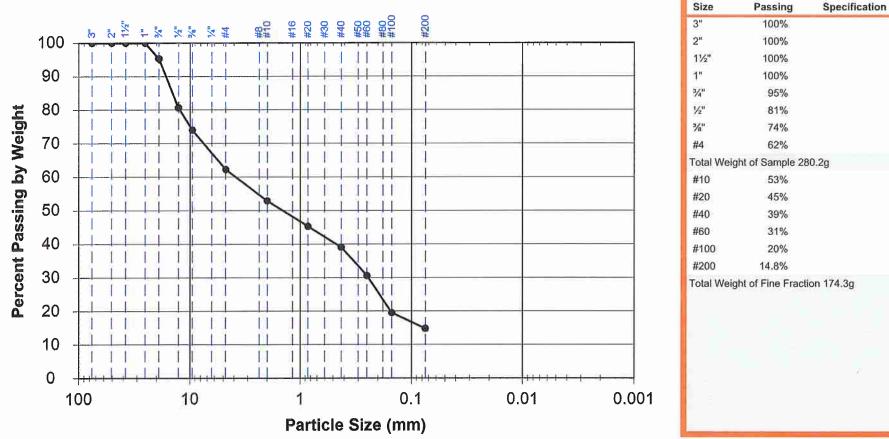
Project:

Work Order: A34316

ASTM D422

Lab Number	2015-367
Received	4/6/2015
Reported	4/21/2015

Particle Size Distribution



Location: Test Borehole K15-05 Sample 10 Depth 27.5'-28.1'

Engineering Classification: Silty Sand with Gravel, SM

Frost Classification:

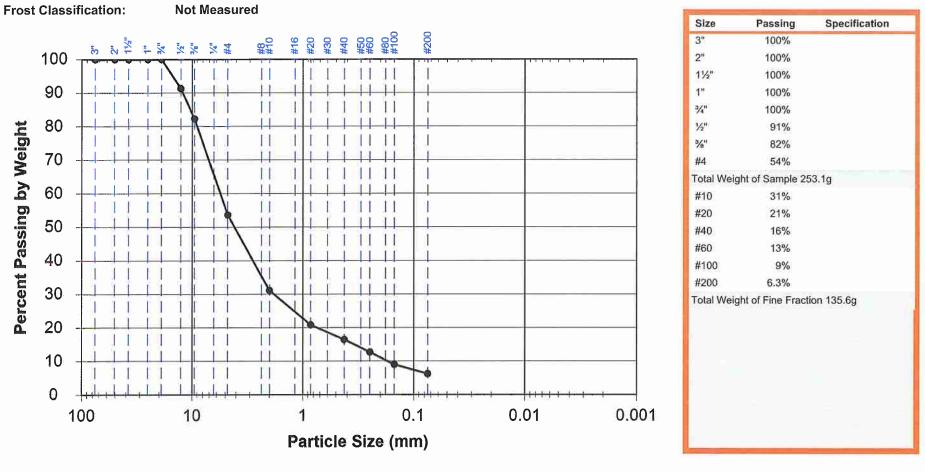
Not Measured

Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution

ASTM D422

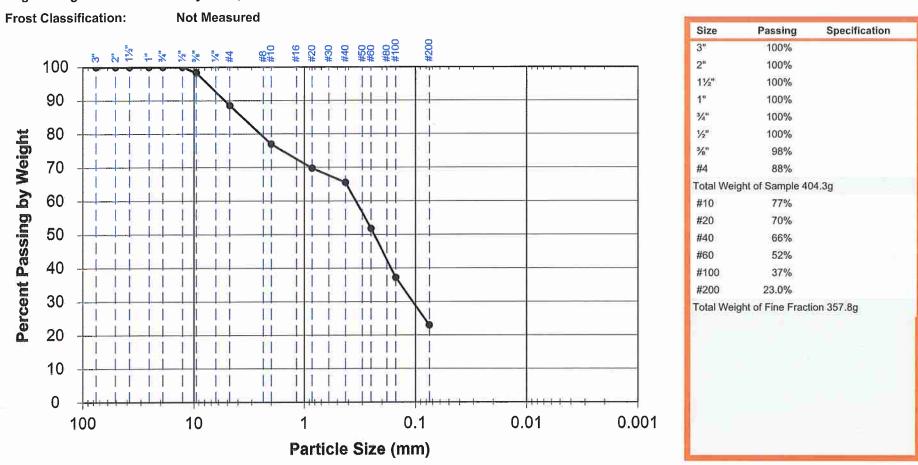
Lab Number	2015-369
Received	4/6/2015
Reported	4/21/2015


Location: Test Borehole K15-05 Sample 11 Depth 30'-30.5' Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution

ASTM D422

Lab Number	2015-370
Received	4/6/2015
Reported	4/21/2015

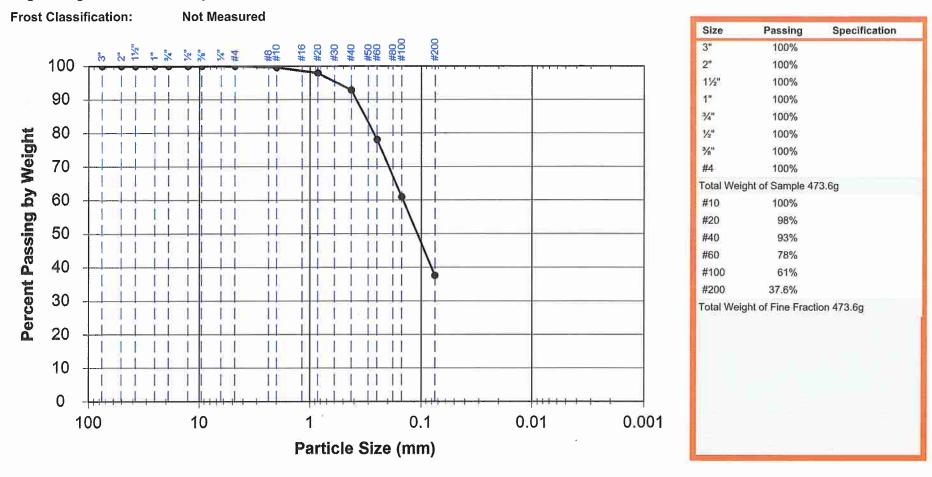

Engineering Classification: Poorly Graded Sand with Silt and Gravel, SP-SM

Location: Test Borehole K15-06 Sample 3 Depth 5'-7'

Engineering Classification: Silty Sand, SM

Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution


ASTM D422

Lab Number	2015-373
Received	4/6/2015
Reported	4/21/2015

Location: Test Borehole K15-06 Sample 8 Depth 17.5'-19.5'

Engineering Classification: Silty Sand, SM

Golder Associates Inc.

USACE Kivalina Causeway

Client:

Project:

Work Order: A34316

Maria E. Kampsen, P.E • 4041 B Street • Anchorage • Alaska • 99503 • 907/562-2000 • Fax 907/563-3953

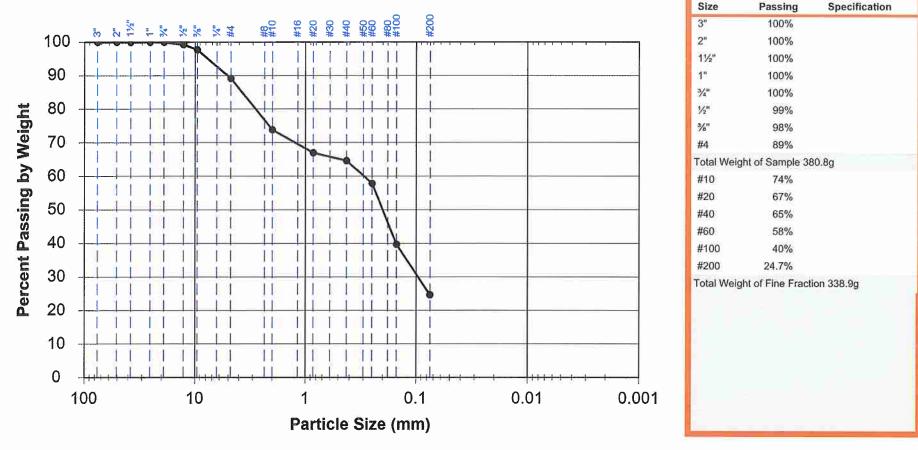
Particle Size Distribution

ASTM D422

Lab Number	2015-378	
Received	4/6/2015	
Reported	4/21/2015	

Location: Test Borehole K15-06 Sample 10 Depth 27.5'-28.3' Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution

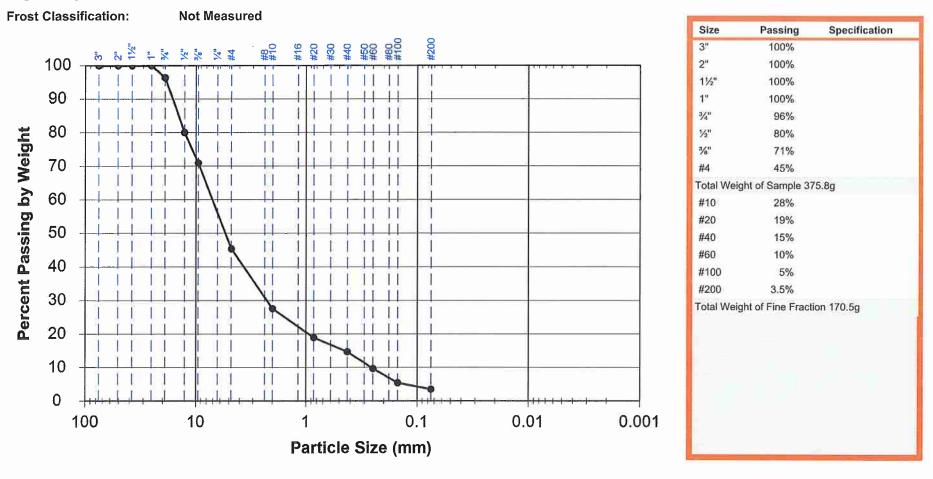

ASTM D422

Lab Number	2015-380	
Received	4/6/2015	
Reported	4/21/2015	

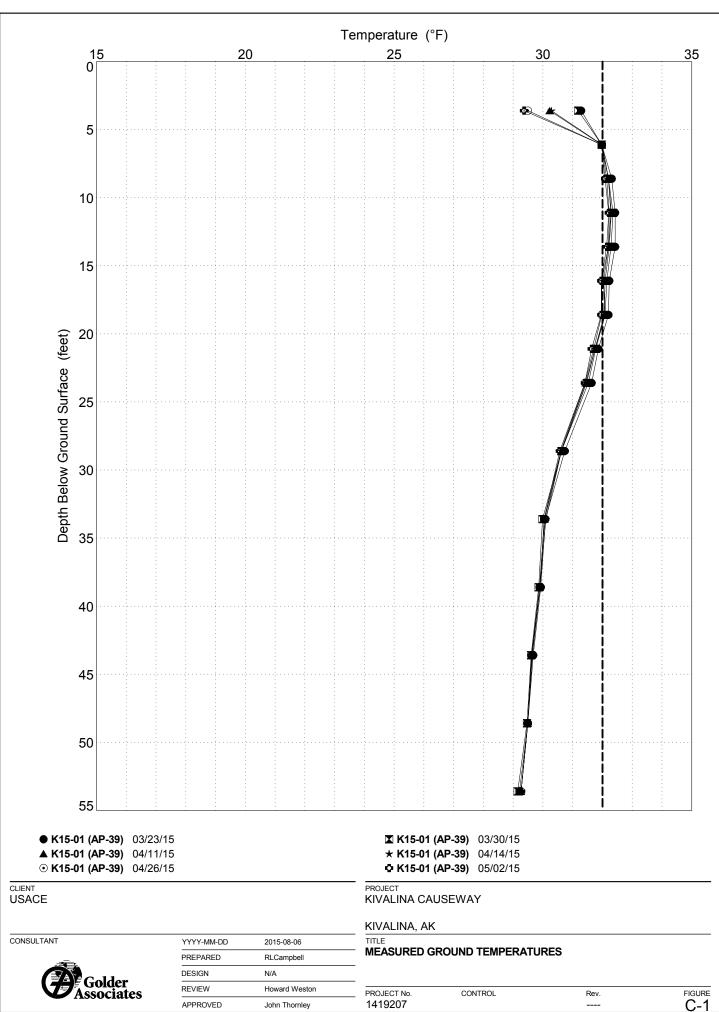
Engineering Classification: Silty Sand, SM

Frost Classification:

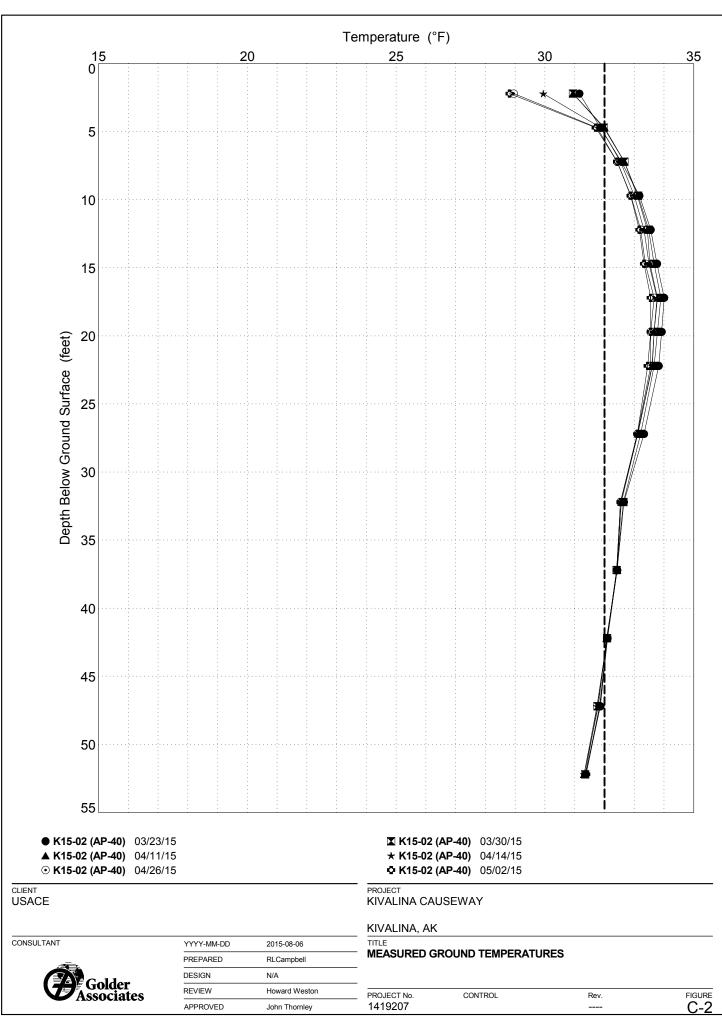
Not Measured

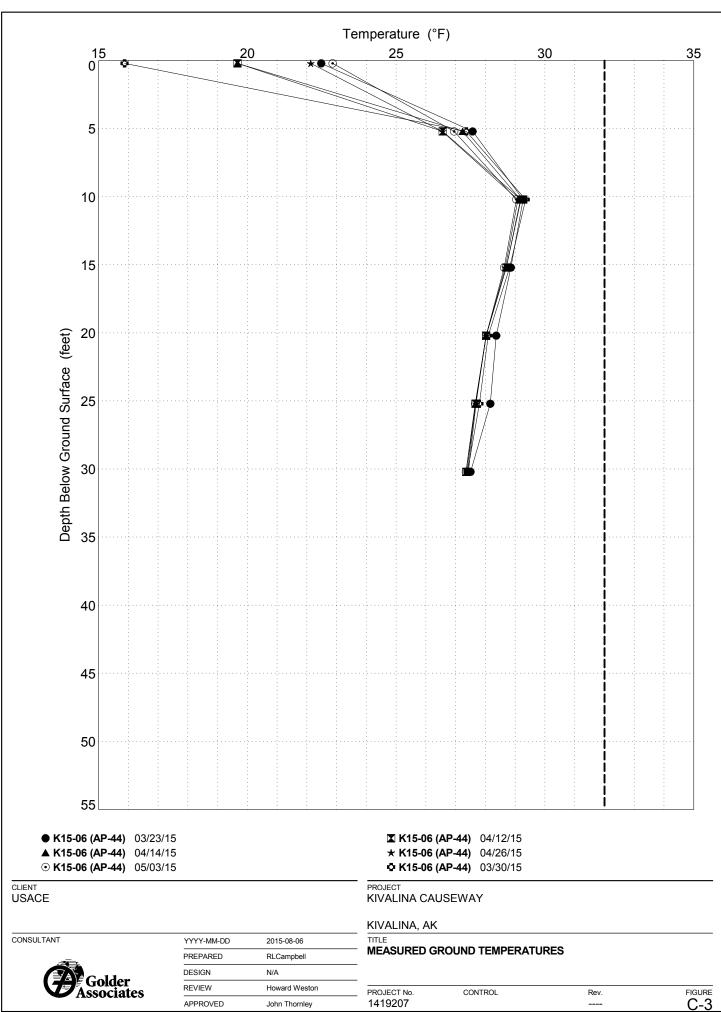

Location: Test Borehole K15-06 Sample 11 Depth 30'-31' Client:Golder Associates Inc.Project:USACE Kivalina CausewayWork Order:A34316

Particle Size Distribution


ASTM D422

Lab Number	2015-381	
Received Reported	4/6/2015	
	4/21/2015	


Engineering Classification: Well Graded Gravel with Sand, GW


APPENDIX C GROUND TEMPERATURE DATA

1 ' ' ' I IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS

¹ ¹ ¹ ¹ IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEE

1 1 1 1 1 1 IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE H

Established in 1960, Golder Associates is a global, employee-owned organization that helps clients find sustainable solutions to the challenges of finite resources, energy and water supply and management, waste management, urbanization, and climate change. We provide a wide range of independent consulting, design, and construction services in our specialist areas of earth, environment, and energy. By building strong relationships and meeting the needs of clients, our people have created one of the most trusted professional services organizations in the world.

Asia Australasia Europe North America + 1 800 275 3281 South America + 56 2 2616 2000

+ 27 11 254 4800

+ 852 2562 3658 + 61 3 8862 3500

+ 356 21 42 30 20

solutions@golder.com www.golder.com

Golder Associates Inc. 2121 Abbott Rd., Ste. 100 Anchorage, AK Tel: 907-344-6001 Fax: 907-344-6011

Engineering Earth's Development, Preserving Earth's Integrity

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation