Finding of No Significant Impact

Environmental Assessment for Newtok Relocation Project
Phase I and Phase II Housing Development
Village Center Development
U.S. Department of Housing and Urban Development, September 2016, Mertarvik, Alaska
HUD Program IHBG/ICDBG HUD Project Number 55IH0202000

The U.S. Bureau of Indian Affairs (BIA) is adopting the Environmental Assessment (EA) completed by the U.S. Department of Housing and Urban Development (HUD), in which a Finding of No Significant Impact (FONSI) was issued on September 14, 2016. This decision is consistent with 43 CFR 4.120(D) use of existing National Environmental Policy Act (NEPA) documents by supplementing, tiering to, incorporating by reference, or adopting previous NEPA environmental analyses to avoid redundancy and unnecessary paperwork.

The proposed action included many components:

• 1920 linear feet of roads
• Construction/relocation of 15 homes
• 15 driveways and gravel pads

The potential of the proposed action to impact the human environment was analyzed in the previously approved Environmental Assessment (EA), as required by the National Environmental Policy Act (NEPA). The BIA revisited the information within the document and determined that the document adequately assessed the environmental effects and reasonable alternatives. Based on that EA and our review of current information, I have determined that the proposed action will not significantly affect the quality of the human or natural environment. In accordance with Section 102(2)(c) of NEPA, as amended, an Environmental Impact Statement is not required.

This determination is based on the following factors:

1. Agency and public involvement solicited for the preceding NEPA document was sufficient to ascertain potential environmental concerns associated with the currently proposed project.

2. Protective and prudent measures were designed to minimize impacts to air, water, soil, vegetation, wetlands, wildlife, public safety, water resources, and cultural resources. The remaining potential for impacts was disclosed for both the proposed action and the No Action alternatives.

3. Guidance from the U.S. Fish and Wildlife Service has been fully considered regarding wildlife impacts, particularly in regard to threatened or endangered species. This guidance includes the Migratory Bird Treaty Act (16 U.S.C. 703 et seq.), the National Environmental Policy Act of 1969, as amended (42 U.S.C. 4321 et seq.), the Bald and Golden Eagle Protection Act (16 U.S.C. 668-668d, 54 Stat. 250), Executive Order 13186 "Responsibilities of Federal Agencies to Protect Migratory Birds"
and the Endangered Species Act (16 U.S.C. 1531 et seq.).

4. The proposed action is designed to avoid adverse effects to historic, archaeological, cultural and traditional properties, sites and practices. Compliance with the procedures of the National Historic Preservation Act is complete.

5. Environmental justice was fully considered.

6. Cumulative effects to the environment are either mitigated or minimal.

7. No regulatory requirements have been waived or require compensatory mitigation measures.

8. The proposed project will improve the socio-economic condition of the affected Indian/Alaska Native community.

Regional Director Date

April 14, 2017
Part 50 Environmental Review Record

Newtok Relocation Project
Phase I, Phase II & Village Center
Metarvik, Alaska
Environmental Assessment and Compliance Findings for the Related Laws

Findings and Recommendations are to be prepared after the environmental analysis is completed. Complete items 1 through 15 as appropriate for all projects. For projects requiring an environmental assessment, also complete parts A and B. For projects categorically excluded under 24 CFR 50.20, complete Part A. Attach notes and source documentation that support the findings.

3. Project Name and Location (Street, City, County, ST):
 Newtok Relocation Project
 Phase I and Phase II Housing Development
 Village Center Development

4. Applicant Name, Address (Street, City, ST, Zip Code), Phone:
 AVCP Regional Housing Authority
 PO Box 767, Bethel, Alaska 99559
 Newtok Village
 PO Box 5596, Newtok, Alaska 99559

5. [] Multifamily [] Elderly [x] Other
 (Explain) Relocation/New Construction

6. Number of dwelling units: 78 buildings 14
 [] stories [] acres
 (Explain)

7. Displacement: [x] No [] Yes

10. Planning Findings: Is the project in compliance or conformance with the following plans?
 Local Zoning: [] Yes [] No [] Not Applicable
 Coastal Zone: [] Yes [] No [] Not Applicable
 Air Quality (SIP): [] Yes [] No [] Not Applicable
 Explain any "No" answer: ___________________________
 Are there any unresolved conflicts concerning the use of the site?
 [x] No [] Yes (explain): ___________________________

11. Environmental Finding: (Check one)
 [] Categorical Exclusion is made in accordance with § 50.20 or
 [x] Environmental Assessment and Finding of No Significant Impact (FONSI) is made in accordance with § 50.33 or
 [] Project is recommended for approval (list any conditions and requirements):

 General Permit (GP) 2007-541-M1 authorized by the Corp of Engineers (COE) allows for the construction and/or relocation of 15 homes in Metarvik, to include driveways/housepads and 1920 linear feet of roads located within Phase I in Metarvik. Additional housing and/or community development projects will need additional authorization from the COE as projects are identified. Work under the GP is authorized and ends December 10, 2017.

12. Preparer: (Signature) [] Date: 9/14/2016

13. Supervisor: (Signature) [] Date: 9/14/2016

14. Comments by Environmental Clearance Officer:
 (Required for projects over 200 lots/units)

15. Comments (if any) by HUD Approving Official:

 Date: 9/14/2016

Previous Editions Are Obsolete

form HUD-4128 (10/28/96)
Part A: Compliance Findings for § 50.4 Related Laws and Authorities

<table>
<thead>
<tr>
<th>§ 50.4 Laws and Authorities</th>
<th>Project is In Compliance</th>
<th>Source Documentation and Requirements for Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>16. Coastal Barrier Resources</td>
<td>X</td>
<td>Alaska has no known or designated Coastal Barrier areas.</td>
</tr>
<tr>
<td>17. Floodplain Management</td>
<td>X</td>
<td>Metavik will not be prone to flooding due to the elevations of the proposed development, which vary from 70ft to 180ft. See topo maps; Newtok/Metavik is not participating in the National Floodplain Insurance Program; undeveloped site is not within a known 100/500 year floodplain and is unmapped by FEMA.</td>
</tr>
<tr>
<td>(24 CFR Part 55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Historic Preservation</td>
<td>X</td>
<td>State Historic Preservation letter dated 7/29/16 concurring that a finding of "no historic properties affected" will be appropriate for the following project components: Phase I Housing, Phase II Housing and activities planned within the Village Center. As noted by SHPO, project related activities will be conducted to avoid and protect the nearest known site, "KBI-00183", identified in Metavik.</td>
</tr>
<tr>
<td>(36 CFR Part 800)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Noise Abatement</td>
<td>X</td>
<td>Metavik sits on largely undeveloped land and does not have any major roads or highways, railroads and/or is located within 15 miles of a civil or military airfield in Newtok. There are no noise sensitive projects that will interfere with the housing development project being proposed. Noise Calculations are not necessary at this time.</td>
</tr>
<tr>
<td>(24 CFR Part 51 Subpart B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Hazardous Operations</td>
<td>X</td>
<td>Metavik sits on largely undeveloped land and does not have, nor is it located in close proximity to a bulk fuel storage facility. Future plans for a bulk fuel storage facility in Metavik will be planned in accordance with 24 CFR Part 51C and located outside of the acceptable separation distance requirements from residential housing and community structures to ensure safety of structures as well as open areas where people will gather outside, such as parks.</td>
</tr>
<tr>
<td>(24 CFR Part 51 Subpart C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Airport Hazards</td>
<td>X</td>
<td>An airport runway does not currently exist in Metavik. However, several plans exist and call for a proposed local airport in the future. Based on proposed airport runway maps, proposed project activities will be outside the Airport Runway Zones.</td>
</tr>
<tr>
<td>(24 CFR Part 51 Subpart D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Protection of Wetlands</td>
<td>X</td>
<td>Corp of Engineers letter dated 9/8/16 authorizes the construction/relocation of 15 homes in the new community of Metavik under General Permit 2007-541-M1. The 8-Step process was completed - 1st Notice posted 8/5/16 pulled 9/24/16 - no comments; 2nd Notice posted.</td>
</tr>
<tr>
<td>(E.O. 11990)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Toxic Chemicals and Radioactive Materials (§ 50.3(j))</td>
<td>X</td>
<td>Metavik is not listed or located within one mile of an EPA Superfund Site or within 2000 feet of a site on the CERCLIS List; not located within 3000 feet of a toxic or solid waste land fill. Any future proposed solid waste landfills will be located further than 3000 feet from any properties projected for use in HUD programs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Endangered Species - Will have no effect on listed species, per email dated 7/8/16 from Douglas Cooper, Branch Chief - Ecological Services; No effect on species under National Marine Fisheries Services, per email dated 7/27/16 from Jon Kurland, Asst Regional Administrator for Protected Resources; No further permitting required within Yukon Delta National Wildlife Refuge, per email dated 7/22/16 from Kent Stahinecker, Refuge Manager, Yukon Delta NWR.</td>
</tr>
<tr>
<td>24. Other § 50.4 authorities (e.g., endangered species, sole source aquifers, farmlands protection, flood insurance, environmental justice);</td>
<td>X</td>
<td>Wild and Scenic Rivers - Metavik is not located within 1 mile of any listed Wild and Scenic River system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Farmland Protection - There are no prime, unique or statewide importance farmlands in Alaska</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clean Air Act - Metavik is not located in a designated non-attainment area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environmental Justice - Proposed housing development sites are being developed so that they will not be located in areas that have a new, continued or historically disproportionate potential for high and adverse effects on minority or low-income populations; and that do not suffer from disproportionate adverse health and environmental effects relative to the community at large.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sole Source Aquifers - There are no Sole Source Aquifers in the State of Alaska</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coastal Zone Management Act - Currently the State of Alaska does not have a Coastal Zone Management Plan.</td>
</tr>
</tbody>
</table>
Part B: Environmental/Program Factors:

<table>
<thead>
<tr>
<th>Factors</th>
<th>Anticipated Impact/Deficiencies</th>
<th>Source Documentation and Requirements for Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>25. Unique natural features and areas</td>
<td>X</td>
<td>No unique natural features are present in Mertarvik (Source: Newtok Village/DOWL Eng.)</td>
</tr>
<tr>
<td>26. Site suitability, access, and compatibility with surrounding development</td>
<td>X</td>
<td>Although a comprehensive plan has not been developed for the Mertarvik site, in March of 2012 the Tribe adopted Guiding Principles (Malikitaquyarat) and developed a Strategic Management Plan which are considered the guiding documents for development at Mertarvik. No current zoning applies to this project. It has not been determined if this project will result in zoning regulations. The proposed one-story, single-family units are compatible with the proposed village layout and are typical of village housing units. The project is not sited within an urban environment and will not result in an urban environment. (Source: Newtok Village/DOWL Engineering)</td>
</tr>
<tr>
<td>27. Soil stability, erosion, and drainage</td>
<td>X</td>
<td>Surface rock in the vicinity of the project site is vascular basalt. The soil in most areas is basalt weathered to sand and gravel. The surface of the unweathered basalt ranged from 7 to more than 31.5 feet below the ground surface. The ground surface has a layer of organics that varies in depth, but is generally 1 to 2 feet thick. Below the surface organics there is a transition layer of silt that contains roots and organics. The volume of organics decreases with depth. Permafrost in the general project area was and the depth to permafrost in most areas is probably about 18 to 24 inches. The permafrost is ice rich and has moisture content (on the basis of weight) of 20 to 30 percent. There is surface evidence that ice wedges are present in the area, although none was observed. (Source: Newtok Village/DOWL Engineering)</td>
</tr>
<tr>
<td>28. Nuisances and hazards</td>
<td>X</td>
<td>No natural hazards have been identified at the project site. A hazard mitigation plan for Newtok was updated in 2015 and evaluated hazards at Mertarvik. The project site also shares the following hazard type with Newtok: earthquake, ground failure, severe weather, and tundra fire. The Newtok Village Council supports all projects that provide mitigation measures from all natural hazards of earthquake, ground failure, severe weather, and tundra fire at the current as well as the new Mertarvik Village site (2015 Newtok HMP). For safety, residents will likely move back to Newtok during the spring and fall when movement back and forth from Newtok to Mertarvik would be too risky (2012 SMP background report).</td>
</tr>
<tr>
<td>29. Water supply/sanitary sewers</td>
<td>X</td>
<td>Water is currently available through access to a local spring, a well, or through rainwater catchment. Residents will select their source and then point-source water treatment plants will treat water in homes. After the initial phase, a washer/trailer/water plant will be constructed. (Source: Newtok Village/DOWL Engineering) Mertarvik residents will gather their water from multiple sources: from the nearby spring, from rainwater off the roof in summer, and from ice chipped and carried from ponds in the winter. The demonstration home currently being built in Mertarvik will contain the PASS (Portable Arctic Sanitation System) model, which is an in-house water treatment plant to bring water to portable stables whatever the source. The system pulls water through a set of 5 micron and .5 micron filters through either an electric pump or a hand pump up to a holding tank, where it can gravity feed back down into a sink. The filters clean the water of common contaminants such as giardia and other bacteria. If viruses are a concern, chlorine can be added to the tank at the top of the system. See attached the schematic drawings and a few pictures of the system. (Cold Climate Housing Research Center - email dated 9/6/16 from Aaron Cooke, Architectural Researcher)</td>
</tr>
</tbody>
</table>
| 30. Solid waste disposal | X | A burn unit will be available to manage solid waste during the initial phase of relocation; a "mini dump" is planned. (Source: Newtok Village/DOWL Engineering) The first phase of housing would use the existing septic field that has already been constructed at the MEC Site. As of yet, the interface point between the haul-distribution point and this septic system has not been designed. The draft housing plan will focus on a community-wide waste system. (Source: Newtok Village/DOWL Engineering) The demonstration home currently being built in Mertarvik will utilize a separating toilet to provide a cleaner human waste sanitary way of disposing of human waste in the absence of conventional sewer. The toilet separates solid waste from liquid waste through its geometry. The liquid waste is stored in an airlocked container so as to minimize any spillage or odor. The solid waste is kept in a holding container in the toilet. The demonstration house uses the toilet as the exhaust port for its ventilation system, running stale air on its way out of the
31. Schools, parks, recreation, and social services

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31.</td>
<td>Schools, parks, recreation, and social services</td>
</tr>
<tr>
<td></td>
<td>An Education Action Plan was developed to ensure sufficient educational opportunities for school-age children prior to school building. Children will be home-schooled or be given distance learning opportunities and if needed, a temporary teaching facility could be built if needed; Social services will be accessed in Newtok; Due to the remote location, open space and outdoor recreational facilities are not currently planned during the initial phase. (Source: Newtok Village/DOWL Engineering)</td>
</tr>
</tbody>
</table>

32. Emergency health care, fire and police services

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32.</td>
<td>Emergency health care, fire and police services</td>
</tr>
<tr>
<td></td>
<td>During the initial phase, health care and police services will be provided primarily in Newtok. A MASH unit will be established to provide first aid and limited health care service at the new village site. After the initial phase, a public safety building (for police and fire) and clinic will be constructed at the new village site. Initially homes in the new village site will also be provided with fire suppression equipment. (Source: Newtok Village/DOWL Engineering)</td>
</tr>
</tbody>
</table>

33. Commercial/retail and transportation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33.</td>
<td>Commercial/retail and transportation</td>
</tr>
<tr>
<td></td>
<td>All goods and services will be obtained in Newtok. After the initial phase, a store will be constructed (Source: Newtok Village/DOWL Engineering)</td>
</tr>
</tbody>
</table>

34. Other

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>34.</td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>Energy Consumption - The average modern home in Newtok uses 300 gallons of heating fuel every 1-2 weeks. In light of this, housing in Phase I will be 6-star rated homes. Heat will be provided to Phase 1 residents through wood stoves with individual generators providing electricity. Energy consumption by residents in Phase II has not been established. The first homes will have their own generators that feed into battery banks and are solar/wind ready as well as ready to plug into a conventional grid. Current design is focused on self-contained pioneer units that can tie into an electrical grid when a grid is created. Current plans exceed property and energy-efficiency standards currently established in Alaska. The home is modeled to use approximately 250-300 gallons of heating oil annually. Currently, the average usage in the region is around 900 gallons annually. There are currently three storage containers for heating oil and gasoline (two near the barge landing and another one up near the MEC). A 350kw generator will be used to operate the rock crusher and electricity from it will be provided to residents and other buildings during the initial phase using a 480V line. A #2 diesel tank will be used to store diesel for heavy equipment use and for heating. After the initial phase, a fuel tank farm and power plant will be constructed (Source: Newtok Village/DOWL Engineering)</td>
</tr>
</tbody>
</table>

Demographic Character Changes - No demographic data for the project site exists. The project would not change the demographics of the area. An Elder Housing Model is being developed to accommodate the needs of elderly residents. (Source: Newtok Village/DOWL Engineering)

Displacement - The eventual relocation of all of the residents of Newtok to the new site in Metarvik will result in zero displacement. As additional housing units are constructed, and families from Newtok relocate to Metarvik, activities will be done in accordance with the Uniform Relocation Act to ensure displacement issues, if any, are properly addressed. (AKONAP HUD)

Employment and Income Patterns - The school, clinic, village services and commercial fishing provide employment. Subsistence activities and trapping supplement income. In 2009, 17 residents held commercial fishing permits. The project is not anticipated to affect employment or income patterns. (Source: Newtok Village/DOWL Engineering)

Open Space, Recreation and Cultural Facilities - Due to the remote location, open space and outdoor recreational facilities are not currently planned. No organized recreational opportunities will exist for the initial phase. After the initial phase, a multi-purpose building and/or community gym will be constructed. The Metarvik Evacuation Center will serve as a community space and would host a variety of cultural events, such as be also be Traditional Eskimo Dance, Community meetings and other activities. After the initial phase, a tribal hall, library, and church will be constructed. (Source: Newtok Village/DOWL Engineering)

Transportation - A Long Range Transportation Plan (LRTP) developed in accordance with 25 C.F.R. Part 170 for the Newtok Traditional Council will guide transportation-related decisions. All transportation off-site is currently by boat. Travel within the project site is by 4-wheeler or by foot. An airport serving future residents is anticipated but has not yet been designed. (Source: Newtok Village/DOWL Engineering)
Vegetation and Wildlife - The site is dominated by wetlands with vegetation typical of western Alaska and the lowlands of the Yukon-Kuskokwim Delta. Upgradient of the project site, the vegetation changes to heath tundra, a complex of vegetative associations that vary according to small differences in exposure, drainage, and disturbance. Heath tundra is characterized by a moss and lichen mat on which other plants grow. Sedges and grasses are abundant. In drier areas, woody plants consisting primarily of prostrate or low-growing shrubs are common. In 2005 the Corps of Engineers refined the delineation of wetland and vegetation types around the project site. Wetland vegetation at the project site is composed mostly of palustrine emergent persistent/scrub-shrub evergreen/moss and palustrine emergent persistent/scrub-shrub broad-leaved deciduous wetland. Vegetation types are mostly mesic shrub-birch ericaceous and tussock tundra interspersed with low, open willow shrub and blue joint herb shrub complex patches. These wetland and vegetation types are typical and widespread throughout higher ground on Nelson Island and are not unique to the project site.

Small mammals, including voles, shrews, lemmings, short-tailed weasels, and mink, range across much of Nelson Island and could be present throughout the project area.

Fish and Wildlife Service biologists noted an abundance of voles and lemmings during an August 2006 field study of the area (USFWS 2006). Reindeer were introduced to Nelson Island in 1934, but there are no reindeer on the island today. There are also no caribou on Nelson Island. Caribou range to north, east, and southeast of Nelson Island, but their range does not extend to the island. The Mulchatna herd, which ranges south of the Kuskokwim River, possibly comes closest to Nelson Island.

The Yukon-Kuskokwim Delta is rich in bird species diversity, especially during the summer when the delta hosts large numbers of nesting waterfowl. It is one of the most productive areas in the world for geese. Baird Inlet Island, about 8 miles southwest of Newtok and 4 miles north of the project site, is home to a colony of about 4,500 to 10,122 nesting pairs of Pacific black brant. The sea bird colony closest to the project site is on the outer coast of Nelson Island, approximately 40 miles from the site. (Source: 2008 EA)
NEWTOK RELOCATION PROJECT
Phase I Housing

Village Center

Phase II Housing

NOTES

1. HOUSE LOT SIZES ARE APPROXIMATELY 0.75 ACRES

BAIRD INLET

LEGEND

- VILLAGE CENTER
- PHASE I HOUSING (25)
- PHASE II HOUSING (47)
- SCHOOL PROPERTY
- EXISTING BUILDINGS
- EXISTING DISCHARGE VARY ROAD
- PROPOSED ROADS (PHASE I)

- TEN MILE BRIDGE SITE

- 10 LEGEND
NOTES

1. HOUSE LOT SIZES ARE APPROXIMATELY 0.75 ACRES

LEGEND

- VILLAGE CENTER
- PHASE 1 HOUSING (25)
- PHASE 2 HOUSING (42)
- PHASE 3 HOUSING (64)
- SCHOOL PROPERTY
- EXISTING BUILDINGS
- EXISTING DURABASE MAT ROAD
- PROPOSED ROADS (PHASE 1)

BAIRD INLET

= Site & activities covered under the Corp. of Engineers General Permit #2007-541-M1
1. Final configuration of roads and pads may vary from those shown.

2. Culverts will be provided as required to provide to maintain natural drainage.

AVCPRHA FY 2017 HOUSING
MERTARVIK, AK

SITE PLAN

POA-2016-329, Baird Inlet
AVCP RHA, Newtok relocation - Mertarvik
Drawings dated September 7, 2016
Sheet 2 of 6
1. HOUSE LOT SIZES ARE APPROXIMATELY 0.75 ACRES

NOTES

LEGEND

- VILLAGE CENTER
- PHASE 1 HOUSING (25)
- PHASE 2 HOUSING (42)
- PHASE 3 HOUSING (64)
- SCHOOL PROPERTY
- EXISTING BUILDINGS
- EXISTING DURASASE WAT ROAD
- PROPOSED ROADS (PHASE 1)

Proposed AVCP Title VI Home Location
Clarence Rhode Unit

Newtok Native Corporation lands to be conveyed to the United States as part of the Yukon Delta NWR.

Selected lands to be relinquished by Newtok Native Corporation.
- 3,990 Acres
- 996 Acres
- 10,943 Acres

Newtok Exchange
U.S. Fish & Wildlife Service
Yukon Delta National Wildlife Refuge

Land status represents USFWS interpretation of BLM records.
Land status current to 05/21/2003.

April, 2004
Introduction

Newtok is a community of approximately 325 residents in the Yukon-Kuskokwim Delta, situated between the Newtok and Ninglick rivers (figure 1). In 1954, the Ninglick River was about 4,000 feet south of the community, but by 2006, the river had moved to within 800 feet of the nearest structures. Over the last 50 years, the erosion problem has been addressed unsuccessfully in many ways. Relocating the community has been proposed as the best solution to the problem. The Newtok Traditional Council (the federally recognized tribe) evaluated six relocation sites through polls of residents in 1996, 2001, and 2003, and the preferred location was Mertarvik on Nelson Island (92% for Mertarvik, 3% for other locations, 5% for other solutions, no votes for relocating to one of the other area communities). Congress approved a land exchange between the Newtok Village Corporation and the U.S. Fish and Wildlife Service in 2003, under the Alaskan Native Village and the Interior Department Land Exchange Act of November 17, 2003 (Public Law 108-129, 117 Stat. 1358). The Department of Interior conveyed 10,943 acres at Mertarvik to the Newtok Village Corporation on April 28, 2004.

![Newtok Vicinity](image)

Figure 1. Location and vicinity.

The environment around Newtok is similar to many portions of the lower Yukon-Kuskokwim Delta – a moist low lying plain with little elevation change, a great deal of surface water, and many lakes (figure 2). In contrast, Mertarvik gently slopes to the toe of the Kaluyut Mountains on the north shore of Nelson Island. The underlying basaltic bedrock is volcanic in
The United States of America

Interim Conveyance

AA-85363

This Interim Conveyance is issued by the UNITED STATES, Department of the Interior, Bureau of Land Management, 222 West Seventh Avenue, #13, Anchorage, Alaska 99513-7599, as GRANTOR, to Newtok Native Corporation, P.O. Box 5528, Newtok, Alaska, 99559, as GRANTEE, for lands in the Bethel Recording District.

WHEREAS

Newtok Native Corporation

is entitled to a conveyance pursuant to the Alaskan Native Village and the Interior Department Land Exchange Act of November 17, 2003, Pub. L. 108-129, 117 Stat. 1358, of the surface and subsurface estates in the following-described lands, designated as Proposed Village Site on the map entitled Proposed Newtok Exchange, dated September 2002, referenced in the Act:

Seward Meridian, Alaska

T. 9 N., R. 85 W.,
That portion of Nelson Island lying within:

Sec. 31.

Containing approximately 0 acres.

T. 8 N., R. 86 W.,
Those portions of Nelson Island lying within:

Secs. 3 to 10, inclusive;
Secs. 17 and 18;
Secs. 20 and 29;
Secs. 31 and 32.

Interim Conveyance No. 1876
Containing approximately 5,563 acres.

T. 9 N., R. 86 W.,
Those portions of Nelson Island lying within:
Secs. 32 to 36, inclusive.

Containing approximately 70 acres.

T. 8 N., R. 87 W.,
Those portions of Nelson Island lying within:
Secs. 1 to 4, inclusive;
Secs. 10, 11, and 12;
Secs. 35 and 36.

Containing approximately 5,310 acres.

Aggregating approximately 10,943 acres.

Excluded from the above-described lands herein conveyed are the submerged lands, if any, up to the ordinary high water mark, beneath rivers or streams 3 chains wide (198 feet) and wider, and lakes 50 acres in size and larger, which are meanderable according to the 1973 Bureau of Land Management Manual of Surveying Instructions, as modified by Departmental regulation 43 CFR § 2650.5-1, and navigable waters, if any, of lesser size. These submerged lands will be identified at the time of survey. Also excluded from the above-described lands herein conveyed are lands covered by tidal waters up to the line of mean high tide. The actual limits of tidal influence for those water bodies, if any, will be determined at the time of survey.

NOW KNOW YE, that there is, therefore, granted by the UNITED STATES OF AMERICA, unto the above-named corporation the surface and subsurface estates in the lands above described; TO HAVE AND TO HOLD the said lands with all the rights, privileges, immunities, and appurtenances, of whatsoever nature, thereunto belonging, unto the said corporation, its successors and assigns, forever.

THE GRANT OF THE ABOVE-DESCRIBED LANDS IS SUBJECT TO:

1. Issuance of a patent after approval and filing by the Bureau of Land Management of the official plat of survey confirming the boundary description and acreage of the lands hereinabove granted;
2. The provisions, conditions, and limitations of the Alaskan Native Village and the Interior Department Land Exchange Act of November 17, 2003, 117 Stat. 1358; and

3. Valid existing rights therein, if any.

IN WITNESS WHEREOF, the Secretary of the Interior has, in the name of the United States, set her hand and caused the seal of the Bureau of Land Management to be hereunto affixed on this 28th day of April, 2004, in Anchorage, Alaska.

UNITED STATES OF AMERICA

[Signature]
Gale A. Norton
Secretary of the Interior

Return recorded document to:

LAW OFFICE OF GLEN PRICE
P.O. BOX 4739
PALMER, ALASKA 99645
(907) 746-5970

Interim Conveyance No. 1876
Strategic Management Plan

Newtok to Mertarvik

March 2012

MERTARVIK

Nunaullemteggun ikayuquilluta tamamta, assirluta aknirtenritellerkamtenun, nuggtarlemtenun ciunerkamteni

a community that builds together for the safe and healthy future of Newtok
STRATEGIC MANAGEMENT PLAN :: Newtok to Mertarvik
FINAL DRAFT

Prepared for the State of Alaska Department of Commerce, Community, and Economic Development (DCCED) Division of Community and Regional Affairs by Agnew::Beck Consulting.

This report is funded with qualified outer continental shelf oil and gas revenues by the Coastal Impact Assistance Program, U.S. Fish and Wildlife Service, U.S. Department of the Interior.

DCCED Project Manager:
Sally Russell Cox, Planner, Division of Community and Regional Affairs

Project Advisors:
Stanley Tom, Tribal Administrator, Newtok Traditional Council
George Tom, President, Newtok Native Corporation
Greg Magee, Program Manager, Village Safe Water Program, Alaska Department of Environmental Conservation

With special acknowledgement to
the Newtok Community and the Newtok Planning Group
Additional Editorial Contributions from:
Andrea Elconin, Program Manager, U.S. Army Corps of Engineers
Carolyn George, Secretary, Newtok Traditional Council
David Vought, Sustainability Officer, Alaska HUD Office of Native American Programs
Dan Boccia, Alaska Native Tribal Health Consortium, Lead Civil Engineer
George Owletuck, MA CEO Mertarvik Community Development Corporation
Grant Kashatok, Principal, Ayaprun School and Newtok Youth
Guy McConnell, Biologist, U.S. Army Corps of Engineers
Mike Black, Director of Program Development, Alaska Native Tribal Health Consortium
Newtok Traditional Council
Newtok Native Corporation
PDC Engineering
Participants of the October 21, 2011 Newtok Planning Group Meeting
Robin Bronen, University of Alaska Fairbanks, Resilience and Adaptation Program
USKH, Inc.
Table of Contents

A Message from the Community ... ii

Introduction ... 1

Why Develop a Strategic Management Plan? 3

Mission Statement + Guiding Principles4

Vision: Relocation Plan to Mertarvik 5

Strategic Focus Areas .. 8

Site Preparation ... 9

Building Capacity ... 10

Emergency Response + Public Health 12

Housing .. 13

Drinking Water + Sanitation ... 14

Transportation ... 15

Energy .. 16

Education .. 17

Communications + Community Resources 18

Newtok Closure + Restoration 19

Permitting + Why It's Important 23

Next Steps ... 25

Newtok Traditional Council Resolution 12-12 26
This page is intentionally left blank
A Message from the Community

March 9, 2012

It is with excitement and great pride that we share with you our Strategic Management Plan – Newtok to Mertarvik. This document will chart the course of our future, which is to relocate as a community to Mertarvik. We will not be separated. We will stay together and we will move together.

Not that long ago the water was far from our village and could not be easily seen from our homes. Today the weather is changing and is slowly taking away our village. Our boardwalks are warped, some of our buildings tilt, the land is sinking and falling away, and the water is close to our homes. Our infrastructure that supports our village is compromised and affecting the health and well-being of our community members, especially our children. Our children should not know the governmental term “disaster declaration.”

We saw the changes coming, we consulted our elders, and we have taken steps to move to safer land. By a vote of the people we selected Mertarvik as the place for our new village and we worked for many years to secure the land. Mertarvik is a place that we know well as we frequently stop there for fresh water before hunting and fishing trips. It is on higher ground and it will provide us with a safe site on which to build our new village.

Over five and a half years ago we joined with the State of Alaska and federal and regional agencies to create the Newtok Planning Group. This joint effort was new and has been led by Maligtaquyarat, our guiding principles, as it is our desire that our relocation be defined by our Yup’ik way of life. We have had the great benefit of working with dedicated, thoughtful partners. We believe these years have seen significant progress and this Plan is an indicator of that progress.

As we look to the future we are dedicated to the hard work of moving our community. We are strong people and are used to hard work. It has taken years of partnership to get to this point, but we also know that the water is getting closer and time is running out. With this Plan, we look to both renew the commitments with our current partners and to develop relationships with new partners to help us turn this document into action and to make our move to safer land a reality.

We have taken instruction from our elders, who are our advisors and our greatest resource. We owe it to our elders to provide them with a life where they can focus on community and our culture and not worry about the water coming into the village. We owe it to our children to provide them with a life where they do not worry about illness or the coming of the next storm. We will all sleep better when we know that our elders and children are safe.

With the guidance of our elders, we look forward to working with current and future partners who share our collective vision of creating our new village in accordance to our guiding principles. Thank you for helping us move our village.

Moses Carl
Newtok Traditional Council

George Tom
Newtok Native Corporation
This page is intentionally left blank
Introduction

Newtok is a growing Yup’ik Eskimo village located on the Yukon-Kuskokwim Delta along the western coast of Alaska, near the confluence of the Newtok and Ninglick Rivers. As detailed in the accompanying Relocation Report: Newtok to Mertarvik (August 2011), the community’s health and safety are currently threatened by severe coastal erosion and flooding. The Ninglick River, which is tidally influenced and connects Baird Inlet to the Bering Sea, is eroding toward the village at an average pace of 72 feet per year (with an observed rate of up to 300 feet in one year) and has been moving toward the village for decades. Erosion projections (last updated in 2007) indicate that the river could reach the school by 2017.1

Although the fast pace of erosion is alarming, it was the capture of the Newtok River by the Ninglick River in 1996 that has had the most dramatic impact on livability of the current village. Nearly overnight, the village became more susceptible to storm surges on the Ninglick River due to the direct hydrologic connection. The Newtok River, which runs alongside the village, turned from a free flowing river into a slough. When the slough silted in, commercial vessels could no longer navigate to the village and honey bucket waste no longer flowed out. These changes, which are likely exacerbated by climate change and thawing permafrost, have increased the frequency and severity of flooding in Newtok during the last decade.

A powerful storm surge can raise tide levels 10 to 15 feet above normal. Severe flood events, such as the 20-year flood of 2005 and the lesser flood of 2006, permeate the village water supply, spread contaminated waters through the community, displace residents from homes, destroy subsistence food storage, and shut down essential utilities. The U.S. Army Corps of Engineers (USACE) predicts that a 50-year flood would flood almost the entire community. Staying in place is not an option for Newtok. On November 8th of this year, the National Oceanic and Atmospheric Administration (NOAA) issued a severe storm warning for the western coast of Alaska. The posting concluded with “[t]his will be an extremely dangerous and life threatening storm of epic magnitude rarely experienced” – a powerful reminder of Newtok’s vulnerability.

In early 2006, the Newtok Traditional Council requested assistance from the DCCED Division of Community and Regional Affairs (DCRA). Despite the community’s acquisition

1 The Relocation Report includes citations for the background information summarized within this section.
Residents discuss the phases of relocation and what life might be like in Mertarvik and Newtok as the community moves.

of a suitable new village site, Newtok was facing resistance with its relocation effort, the threat of erosion was ever present, and no state or federal agency was authorized to relocate an Alaskan community. DCCED is directed through two State of Alaska Administrative Orders to "to act as the state coordinating agency to coordinate with other state and federal agencies to propose long-term solutions to the ongoing erosion issues in ... affected coastal communities in this state." In order to carry out this coordination for Newtok, the Newtok Planning Group (NPG) was formed.

Under this backdrop, the community and their NPG partners have made significant progress laying the groundwork for the future townsite, Mertarvik. Amongst the progress, the NPG saw the need to develop a strategic management plan for the relocation and, in doing so, set clear direction and priorities for relocating Newtok to Mertarvik. DCCED secured a grant for the SMP through the federal Coastal Impact Assistance Program and in January 2011, awarded a contract for the project. This document represents the culmination of a year-long effort that included two community-wide meetings in Newtok, two Newtok Traditional Council meetings in Newtok, a site visit to Mertarvik, three Newtok Planning Group meetings, more than forty-five stakeholder and potential funder interviews, and numerous planning sessions.

2 State of Alaska Administrative Orders 231 and 239

MERTARVIK :: Strategic Management Plan
Why Develop a Strategic Management Plan?

The goal of the Mertarvik Strategic Management Plan is to set a common vision for relocating the village of Newtok through a plan that provides guidance to all activities at Mertarvik, with a focus on priority actions during the next three years. The reasons for producing a strategic management plan are many:

Develop a Collective Vision

With growing concerns and urgency to relocate before Newtok is destroyed by erosion, it is important to focus the resources of the community and supporting partnerships behind a common vision and common set of priorities.

Establishing a Framework for Other Plans

The strategic management plan acts like an “umbrella document” for relocation activities. All other plans, policies and strategies will support the strategic management plan and take direction from it.

Communicating the Strategic Plan

Strategic planning establishes and communicates the community vision, guiding principles and strategic actions in a positive and practical way to everyone in the community, government agencies, and other organizations.

Entering Into Effective Partnerships

A strategic management plan provides the basis for strengthening existing and building new partnerships with different levels of government, as well as other partners and funders. These partnerships are essential to achieving the strategic actions of the plan.
Mission Statement + Maligtaquyarat
(Guiding Principles) for Mertarvik

Mission
The mission of the Mertarvik Relocation is to create a safe and self-sustainable village for this and future generations that is built by and governed by our own people working together as a tribe and people unified by our history, cultural traditions and language.

Maligtaquyarat (Guiding Principles)
On March 27, 2012, the Newtok Traditional Council unanimously passed and approved a set of guiding principles for the community’s relocation to Mertarvik (Newtok Traditional Council Resolution 12-12, page 20). It is the hope and intent of the Newtok Traditional Council that all community residents and partners working toward the relocation will respect and promote these guiding principles.

The relocation of Newtok will be defined by our Yup’ik way of life. Our Guiding Principles are:

- Remain a distinct, unique community – our own community.
- Stay focused on our vision by taking small steps forward each day.
- Make decisions openly and as a community and look to elders for guidance.
- Build a healthy future for our youth.
- Our voice comes first – we have first and final say in making decisions and defining priorities, by implementing nation-building principles and working with our partners.¹
- Share with and learn from our partners.
- No matter how long it takes, we will work together to provide support to our people in both Mertarvik and Newtok.
- Development should:
 - Reflect our cultural traditions.
 - Nurture our spiritual and physical well-being.
 - Respect and enhance the environment.
 - Be designed with local input from start to finish.
 - Be affordable for our people.
 - Hire community members first.
 - Use what we have first and use available funds wisely.
- Look for projects that build on our talents and strengthen our economy.

¹ Two Approaches to Economic Development on American Indian Reservations: One Works, the Other Doesn’t by Stephen Correll, and Joseph P. Kalt, 2006. The Harvard Project on American Indian Economic Development.
Vision: Relocation Plan to Mertarvik

"One thing that we gain from pioneering is continuing and honoring our values. If we rely on the western society's way of life, that's forgetting who I am. We need to go back to our way of life. We have to start somewhere."

– Newtok Traditional Council Member

The Mertarvik Relocation Plan (Figure A, page 7) defines the long-term vision and goals for relocating Newtok. The Plan delineates four phases: the Getting Ready Phase, the Pioneering Phase, the Transition Phase (which includes early and late stages) and the Final Move Phase. These phases are driven by population levels at Mertarvik. The Relocation Plan also organizes work into nine strategic focus areas – site preparation; transportation; housing; drinking water, sewer, and solid waste; health and safety; communications; education; energy; and community resources – and sets clear goals by phase for each area. Priority strategic focus areas are discussed in detail in the next section while a description of each of the relocation phases is included below.

Phase 1: Uplluteng (Getting Ready)
Population 0

The getting ready phase refers to the current phase of development. The groundwork is being laid for future phases. This phase includes activities and infrastructure such as selecting the site, developing the quarry, drilling two drinking water wells, completing a Community Layout Plan and a Strategic Management Plan, conducting a harbor feasibility study, creating a topographic map to facilitate surveying, and building a barge landing, initial houses, pioneer roads, airport planning, and the foundation of the Mertarvik Evacuation Center (MEC). Efforts in this phase are now well established.

Phase 2: Upagluteng (Pioneering)
Population ~25 to 100 People

Upagluteng refers to the traditional practice of moving with the seasons. The icons in this phase of the Relocation Plan depict what life might be like for the first residents living at Mertarvik. Self-haul water, honey buckets, wood stoves, and individual house generators, correspondence and home schooling, and VHF radio are some of the likely characteristics defining early life in Mertarvik. New technologies for waste water treatment and alternative energies might be piloted during this phase. For safety, residents will likely move back to Newtok during the spring and fall when movement back and forth to Mertarvik via water would be challenging and potentially dangerous because of annual thaw and freeze cycles.
Phase 3: Nass’paluteng (Transition)
Population ~100 People or More

In Yup’ik, Nass’paluteng refers to periods of transition. During the transition phase, more and more community members will make the move to Mertarvik. Early in this phase, a health aide and teacher(s) might be in place to provide health care and education. The MEC will be completed and serve as a multi-functional community facility. A pioneer runway may be completed and larger-scale demonstration projects might test promising technologies as agencies explore sustainable solutions for basic services. As the population grows, reaching 200 or more, community systems that can later be scaled to meet the entire community’s needs should be agreed upon and established for water, wastewater, energy, and communications. An airport, a landfill, a small school, a store, and community greenhouse might be set in place during this phase as well.

Phase 4: Piciurlluni (Final Move)
Population 350 People or More

Piciurlluni means “We made it!” in Yup’ik. This stage represents the final move of all Newtok residents to the new town site. The systems developed during the transition phase are scaled to accommodate more people and more houses. Additional community facility projects, such as a large school, a clinic, and a tribal court, are completed.

Photos by Carolyn George.
<table>
<thead>
<tr>
<th>Community Resources</th>
<th>Energy</th>
<th>Education</th>
<th>Communications</th>
<th>Emergency Response + Public Health</th>
<th>Drinking Water + Sanitation</th>
<th>Housing</th>
<th>Transportation</th>
<th>Site Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure A: Mertarvik Relocation Plan (Vision + Long-Term Goals)
This page is intentionally left blank
Strategic Focus Areas: 2012-2015 Action Plan

This section includes a discussion of strategic focus areas and lays out priority actions that should be undertaken by the community and their partners over the next three years, 2012-2015. The “priority” label indicates the importance of these actions to the relocation as a whole, but especially during the Pioneering phase. Completing these action items over the next three years is critical to the successful implementation of the overall Relocation Plan that will take place over the next ten to fifteen years. The intent of the priority actions is to jump-start progress in each strategic focus area, which in turn will trigger additional opportunities and investment for the relocation effort.

Strategic focus areas include:

- site preparation
- building capacity
- emergency response and public health
- housing
- drinking water and sanitation
- transportation
- education
- energy
- communications and community resources
- Newtok closure and restoration

As the community makes progress on current priorities, they will update the SMP to include new priority actions for each focus area. The result is a three-year action plan that draws from interviews and input from the community and a wide range of stakeholders.

Photos by Carolyn George.
Focus Area: Site Preparation
2012-2015 Action Plan
Surveying, Site Control, Planning, Quarry Development

OBJECTIVES

• Develop a village plan that sets a practical framework for guiding near-term locations of housing, community buildings and infrastructure, but is flexible enough to allow for incremental, organic growth.
• Survey parcels to provide for clearly defined ownership and/or rights to use designated lots.
• Secure material and equipment for essential pioneering site preparation.

1. Fund and prepare refined townsite plan.
2. Secure funding for and complete townsite survey.
3. Clarify land ownership issues and develop a site control process both between Newtok Native Corporation and the Newtok Traditional Council, and between these entities and other involved organizations and individual users.
4. Determine method for assigning housing lots to individuals.
5. Establish basic development rules for placing homes on lots.
7. Continue developing the quarry resource.
Focus Area: Building Capacity
2012-2015 Action Plan

Community-Agency Partnership Structure, Workforce Development, Quarry Development and MCDC

"I have confidence about this early move. When I was one or two years old, my family moved. I focus on the time when people decided to move. I believe our sovereign way of life will be stronger – we can start a new life, a new village. We shouldn’t wait. We need to encourage ourselves to do it ourselves. The elders have said we need to change ourselves; we need to start a new beginning and new life. Leave hate and anger and put it away and start a new life."

– Newtok Traditional Council Member

OBJECTIVES

• Build partnership capacity to drive the relocation process (with and without external funding).
• Expand organizational capacity of the Mertarvik Community Development Corporation (MCDC).
• Develop a skilled workforce that can pursue, construct, and maintain infrastructure at Mertarvik and help close and restore Newtok.
1. In the spirit of the Guiding Principles, Newtok will identify additional partners to work with the Newtok Planning Group to implement the SMP.

2. Determine role of MCDC and ramp up key functions required to support relocation efforts.

3. Assess existing local workforce skills and identify skills needed to complete upcoming projects; create a training plan to address labor needs and fill strategic skill sets.

4. Investigate feasibility of selling gravel and rock from quarry to region and invest profits in Mertarvik development.

5. Build relationships with foundations – establish connections and be able to tell the story.

The guiding principles for the relocation draw upon the community’s heritage and values. This poster hangs in the Newtok school.

A top priority for the project team was working with the community to develop a shared vision and framework for the relocation. Residents leave the school after an evening meeting.

Completion of Mertarvik Evacuation Center; Pioneer and Long-term Health and Safety

OBJECTIVES

• Provide a safe place for Newtok residents during a storm or flooding event.
• Create and implement a plan to protect health and safety of pioneers.
• Begin to plan for long-term health care needs and facilities.

PRIORITY ACTIONS

1. Determine whether current design will be used for MEC and, if not, engage in a redesign process.

2. Hire a construction project manager for MEC; train and secure local labor for 2012 construction season.

3. Develop and implement funding strategy for remaining MEC construction needs.

4. Identify trained health professional as a pioneer; secure space to act as housing and a place to practice temporarily, until MEC is constructed.

5. Complete MEC vertical wall construction.

6. Identify funding for assessing the feasibility of moving the existing clinic and begin developing long-term plan based on findings.
Focus Area: Housing
2012-2015 Action Plan

Assessment and Relocation of Existing Housing; Design, Funding and Construction of New Housing

OBJECTIVES

• Develop a financing and construction strategy for meeting the community’s housing need.

• Assemble materials, resources and knowledge – from construction training to outside funding – so residents can move to Mertarvik.

1. Complete tasks outlined in Site Preparation.

2. Conduct housing survey to assess conditions in Newtok and determine specific needs in Mertarvik.

3. Develop a housing strategy.

4. Relocate Newtok houses.

5. Implement housing programs / continue to build new homes.

6. For new and relocated houses, research appropriate energy efficient technologies (space heating and electricity); identify funding needs to integrate those technologies; match need to funding opportunities.
Focus Area: Drinking Water + Sanitation
2012-2015 Action Plan

Feasibility Study - Analyze and Select Alternatives for Phases 2, 3, and 4 and Secure Funding for Design and Construction

OBJECTIVES

• Prepare a feasibility or preliminary engineering study to evaluate options for meeting the drinking water and sanitation (wastewater and solid waste) needs of Phases 2, 3, and 4 of the relocation plan.
• Secure funding to design the recommended alternatives for Phases 2, 3, and 4.
• Secure funding for the construction of the Phase 2 improvements.
• Construct the water and sewer infrastructure for Phase 2.

1. Develop practical and affordable solutions that will provide the drinking water and sanitation facilities for the Mertarvik pioneers (Phase 2).

2. Work closely with Village Safe Water to identify and evaluate alternatives for either a centralized or decentralize water and wastewater system, including moving any of the existing infrastructure to Mertarvik.

3. Ensure that the alternative or alternatives selected for Phases 3 and 4 are sustainable by developing a business plan.

4. Seek and obtain funding for design of Phase 2, 3, and 4 and for construction of Phase 3.
Focus Area: Transportation
2012-2015 Action Plan

OBJECTIVES

- Meet immediate needs for access to/from and within the community for pioneers including a pioneer road system and float plane access.
- Build pioneering infrastructure needed to support future infrastructure and development projects.

1. Work together to complete the Waterfront Development Plan and continue to use the existing barge landing and beach to safely moor community boats.

2. Take advantage of the Newtok Long Range Transportation Plan.

3. Determine feasibility of quarry for gravel to develop pioneer road system and boat landing protection (more in “Site Preparation”).

4. Clearly identify what roads are included in the “pioneer road system” and apply for funding.

5. Identify pioneer runway permitting, right of way, design and construction.
Focus Area: Energy
2012-2015 Action Plan

OBJECTIVES

• Have an energy efficient community; maximizing renewables.
• Have reliable and well maintained energy systems.

PRIORITY ACTIONS

1. Finalize strategy for pioneering energy needs.
2. As part of the site planning process, choose locations for fuel storage and a diesel generator that allow use of waste heat for commercial buildings.
3. Investigate renewable and low cost energy solutions.
4. Seek funding to leverage vendor and engineering resources to design, install and demonstrate new, sustainable approaches to energy generation and conservation.
Focus Area: Education
2012-2015 Action Plan

OBJECTIVES

- Sufficient educational opportunities for pioneering kids and youth.

1. Survey community to better understand short and long-term education delivery needs including the potential number of students at Mertarvik in different relocation phases.

2. Work with pioneering families to secure sufficient correspondence and home school materials.

3. Develop a solution for temporary teaching facility at MEC or different location if MEC completion is further out than anticipated.

4. Begin planning process with LKSD for new facility that includes plan for closing down existing school.
Focus Area: Communications + Community Resources
2012-2015 Action Plan

OBJECTIVES

• Ensure reliable communication between pioneers and Newtok, nearby communities and beyond.
• Ensure access to and protection of food sources.

<table>
<thead>
<tr>
<th>PRIORITY ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ensure all pioneers have a cell phone and/or VHF radio.</td>
</tr>
<tr>
<td>2. Identify feasibility of mail service via float plane or drop service.</td>
</tr>
<tr>
<td>3. Develop cold storage facility for subsistence foods.</td>
</tr>
<tr>
<td>4. Research funding options for community garden/greenhouse.</td>
</tr>
</tbody>
</table>
Focus Area: Newtok Closure + Restoration
2012-2015 Action Plan

Health and Safety of Residents; Restoration of Land

"(The community) would like to say a graceful goodbye to Newtok: we won't be able to see the old village but we will return to some of the same areas for subsistence activities."

– Stanley Tom, Newtok Traditional Council, Tribal Administrator

OBJECTIVES

• Ensure health and safety of Newtok residents.
• Develop a clear plan for the eventual closure and restoration of Newtok.
• Develop support mechanisms for pioneer families.

Cleanup and restoration of the current village site is an important priority.
"I use[d] to volunteer [to] clean up our village and it made a big difference. I hope the whole community will help each other and make a big, big difference. I know when the whole community help[s] each other the time will go fast."

-- Community Member in Letter

Shared with Agnew::Beck

PRIORITY ACTIONS

1. Practice emergency plan including the instant command system.

2. Inventory village resources that can be used at the new village site.

3. Develop preliminary, mid- and long-term plans for closing and restoring the village.

4. Identify immediate activities to support pioneering families and assign tasks that community members can conduct in Newtok.
Mertarvik 2012-2015 Action Plan + Proposed Schedule

Strategic Focus Areas

Site Preparation

1. Fund, develop townsite plan
2. Fund, carry out survey
3. Resolve land ownership questions
4. Determine lot allocation strategy
5. Construct pioneer roads
6. Establish basic housing development rules
7. Develop quarry resource

Building Capacity

1. Identify partnership team
2. Define MCDC role, strengthen functions
3. Assess needed skills, create training plan
4. Assess regional demand for rock/gravel
5. Build relationships with foundations

Emergency Response + Public Health

1. Redesign MEC if necessary
2. Hire MEC construction manager and crew
3. Develop, implement MEC funding strategy
4. Identify health professional pioneer
5. Complete MEC vertical construction
6. Develop long-term plan for clinic

Housing

1. Complete site preparation tasks
2. Conduct housing survey
3. Develop a housing strategy
4. Relocate houses
5. Implement housing programs
6. Research housing energy technologies

Drinking Water + Sanitation

1. Identify practical system alternatives
2. Evaluate + select alternatives
3. Develop business plan
4. Pursue funding for design + construction

<table>
<thead>
<tr>
<th>Strategic Focus Areas</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Preparation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Fund, develop townsite plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Fund, carry out survey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Resolve land ownership</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>questions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Determine lot allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strategy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Construct pioneer roads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Establish basic housing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>development rules</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Develop quarry resource</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Capacity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Identify partnership team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Define MCDC role, strengthen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>functions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Assess needed skills, create</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>training plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Assess regional demand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for rock/gravel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Build relationships with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>foundations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Response + Public</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Redesign MEC if necessary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Hire MEC construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manager and crew</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Develop, implement MEC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>funding strategy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Identify health professional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pioneer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Complete MEC vertical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Develop long-term plan for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clinic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Complete site preparation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tasks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Conduct housing survey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Develop a housing strategy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Relocate houses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Implement housing programs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Research housing energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>technologies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drinking Water + Sanitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Identify practical system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alternatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Evaluate + select</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alternatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Develop business plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Pursue funding for design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ construction</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- = project initiation
- = project maintenance

Mertarvik 2012-2015 Action Plan + Proposed Schedule (cont'd)

<table>
<thead>
<tr>
<th>Strategic Focus Areas</th>
<th>2012 winter/spring</th>
<th>2012 summer/fall</th>
<th>2013 winter/spring</th>
<th>2013 summer/fall</th>
<th>2014 winter/spring</th>
<th>2014 summer/fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Complete Waterfront Development Plan</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Newtok Long Range Transportation Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Determine gravel development feasibility</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Identify pioneer roads + apply for funding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Runway permitting, design + construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Finalize pioneer energy provision strategy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Locate fuel storage + generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Investigate renewable/low-cost energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Funding for energy demonstration projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Determine education needs (survey)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Home school materials for pioneer families</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Temporary teaching facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Plan for new school + closing old facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications + Community Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Cell phones/VHF radio for pioneers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Feasibility of mail service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Develop cold storage facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Research funding for garden/greenhouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newtok Closure + Restoration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Practice emergency plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Inventory resources usable at Mertarvik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Develop preliminary plans for closing village</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Identify activities for supporting pioneers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Icons and shaded boxes representing project initiation and maintenance]
Permitting + Why It’s Important

During the development of the Strategic Management Plan, the following main messages regarding permitting of Mertarvik projects were as follows:

- It is possible that an Environmental Assessment (EA) will suffice for any projects requiring National Environmental Policy Act (NEPA) documentation. If the case can be made that the relocation is initiated by the community and not driven by or dependent upon federally-funded projects, it will be less likely that a federal agency will be required to address the impact of the full relocation in its permitting process.

- As the relocation progresses, opportunities may arise for agencies to pool EA efforts to help conserve limited project resources. For example, the United States Army Corps of Engineers (USACE) Planning Assistance to States Program allows USACE to accept and match non-federal funding from tribes, cities, states, etc. Partnering with USACE, one or more entities would lead the EA process, and individually or jointly take necessary next steps.

- NEPA compliance is only part of the permitting puzzle. The community and their partners must ensure appropriate permits are in place for all projects at Mertarvik. Table C (next page) highlights some, but not all, of the recommended consultations, required permits and clearances by agency and funding type (federal, state and federal, and private).
Table A. Permitting considerations for Newtok relocation projects.

<table>
<thead>
<tr>
<th>Agency</th>
<th>Permit/Clearance/Consultation</th>
<th>When to initiate</th>
<th>Approximate timeline to acquire permit/clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federally Funded Projects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEPA Decision Document</td>
<td>Environmental Assessment (EA)</td>
<td>Upon receipt of funding*</td>
<td>1 year</td>
</tr>
<tr>
<td></td>
<td>Environmental Impact Statement (EIS)</td>
<td>Upon finding of significance during EA process, unless funding agency decides to start with an EIS class of action.</td>
<td>3-5 years</td>
</tr>
<tr>
<td>State Historic Preservation Office (SHPO)/Tribes</td>
<td>Initiation of Consultation</td>
<td>Once a set of Alternatives are selected</td>
<td>30 days</td>
</tr>
<tr>
<td></td>
<td>Finding of No Historic Properties Affected</td>
<td>After selection of a preferred alternative</td>
<td>30-120 days</td>
</tr>
<tr>
<td>State and Federally Funded Projects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States Fish and Wildlife Service (USFWS)</td>
<td>Under the Migratory Bird Treaty Act, there is no provision for consultation or for any allowance or take.</td>
<td>USFWS has established closure dates for different regions of the state to presumptively protect nesting birds. The dates are posted and can be used as a guide and as protection for prosecution from taking migratory birds.</td>
<td></td>
</tr>
<tr>
<td>National Marine Fisheries Service (NMFS)</td>
<td>Consultation for Essential Fish Habitat</td>
<td>For any in-water work</td>
<td>14-30 days</td>
</tr>
<tr>
<td>Alaska Department of Fish and Game (ADF&G)</td>
<td>Title 16 Fish Habitat permit</td>
<td>For any work within Takikchak Creek</td>
<td>30-90 days</td>
</tr>
<tr>
<td>United States Army Corps of Engineers (USACE)</td>
<td>404 Wetlands permit</td>
<td>After a selection of a preferred alternative</td>
<td>120 days</td>
</tr>
<tr>
<td>Alaska Department of Environmental Conservation (ADEC)</td>
<td>Alaska Pollutant Discharge Elimination System (APDES) Construction General Permit</td>
<td>1 month prior to construction, once 100% construction documents are complete</td>
<td>30 days**</td>
</tr>
<tr>
<td>Privately Funded Projects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADF&G</td>
<td>Title 16 Fish Habitat permit</td>
<td>For any work within Takikchak Creek</td>
<td>30-90 days</td>
</tr>
<tr>
<td>USACE</td>
<td>404 Wetlands permit, Individual or Nationwide Permit</td>
<td>For any work placing fill within wetlands</td>
<td>120 days</td>
</tr>
<tr>
<td>USFWS</td>
<td>Under the Migratory Bird Treaty Act, there is no provision for consultation or for any allowance or take.</td>
<td>USFWS has established closure dates for different regions of the state to presumptively protect nesting birds. The dates are posted and can be used as a guide and as protection for prosecution from taking migratory birds.</td>
<td></td>
</tr>
<tr>
<td>ADEC</td>
<td>APDES Construction General Permit</td>
<td>For any work that is part of a development plan with greater than 1 acre of disturbance. 1 month prior to construction, once 100% construction documents are complete</td>
<td>30 days**</td>
</tr>
</tbody>
</table>

*Initiation of NEPA document will begin with informal agency scoping and data gathering. The NEPA process will continue throughout the entire project until a decision document (Finding of No Significant Impact (FONSI) or Record of Decision (ROD)) is obtained.

+Length of consultation will depend on determination of affect by regulatory agency.

** Includes review and approval of SWPPP, pre construction site visit, and submittal of notice of intent.
Next Steps

The next steps for the community are steps that will implement the SMP and move the community forward behind a common vision, strategies, and priority actions over the next three years.

• Bring the SMP “to life” by using the document as a communication tool to gain the support and the funding assistance needed to implement the strategic initiatives in the SMP.
• Solicit formal support for the SMP from existing partnerships and develop additional support from potential partners.
• Establish protocol for ongoing monitoring of the SMP. The SMP is a living document and a process to guide the community with relocation. The community and their partners should assess progress and update the plan at least annually. The update should report the progress made and highlight new challenges and issues, including the remaining focus areas not addressed in this version of the SMP.
• Initiate the Three-Year Action Plan and embrace its direction and priorities.

Photo by Carolyn George.
Newtok Traditional Council Resolution 12-12

MALIGTAQUYARAT
(Guiding Principles for Mertarvik)

The relocation of Newtok will be defined by our Yup'ik way of life. Our Guiding Principles are:

- To remain a distinct, unique community – our own community
- To stay focused on our vision by taking small steps forward each day
- To make decisions openly and as a community and look to elders for guidance
- To build a healthy future for our youth
- Our voice comes first – we have first and final say in making decisions and defining priorities, by implementing nation-building principles and working with our partners
- To share with and learn from our partners
- No matter how long it takes, we will work together to provide support to our people in both Mertarvik and Newtok
- Development should:
 - Reflect our cultural traditions
 - Nurture our spiritual and physical well-being
 - Respect and enhance the environment
 - Be designed with local input from start to finish
 - Be affordable for our people
 - Hire community members first
 - Use what we have first and use available funds wisely
- To look for projects that build on our talents and strengthen our economy

1 Two Approaches to Economic Development on American Indian Reservations: One Works, the Other Doesn't by Stephen Correll, and Joseph P. Kalt, 2006. The Harvard Project on American Indian Economic Development.
NEWTOK TRADITIONAL COUNCIL

RESOLUTION 12 - 12

A Resolution of the Native Village of Newtok's Traditional Council adopting Guiding Principles for the relocation to and development of Mertarvik, the new village site.

WHEREAS: The Native Village of Newtok’s Traditional Council, hereinafter called the Council, is the State and Federally recognized governing body of Newtok, Alaska; and,

WHEREAS: The Village of Newtok has been threatened for years by the advance of the Ninglick River due to high rates of erosion of the river bank adjacent to the village; and,

WHEREAS: This progressive erosion is recognized as a serious long-term threat to the existence of the village; and,

WHEREAS: Seasonal flooding from coastal storms has exacerbated this situation. Newtok was included in two federal disaster declarations, DR-1571-AK (2004 Bering Sea Storm) and DR-1618-AK (2005 Fall Sea Storm); and,

WHEREAS: Studies performed by the U.S. Army Corps of Engineers and others have concluded that the village must relocate as there is no permanent and cost-effective alternative to remain at the current village site; and,

WHEREAS: The Newtok Traditional Council, by a vote of the people of Newtok, selected Mertarvik, a site on the northern coast of Nelson Island, located within the Yukon Delta National Wildlife Refuge, as the preferred relocation site for the village of Newtok; and,

WHEREAS: The Newtok Native Corporation entered into negotiations with the U.S. Department of the Interior, Fish and Wildlife Service to exchange Newtok Native Corporation land for the Mertarvik site; and,

WHEREAS: In November 2003, the 108th Congress passed S. 924, allowing the Newtok Native Corporation to receive title to the Mertarvik land in a land exchange with the U.S. Fish and Wildlife Service; and,

WHEREAS: In May 2006, the Council and the Newtok Native Corporation joined with state, federal and regional agencies and organizations to form the Newtok Planning Group to assist with Newtok’s relocation effort; and,

WHEREAS: In 2008, the Council and the State of Alaska negotiated a commitment with the U.S. Department of Defense, Innovative Readiness Training Program to provide labor on development projects at Mertarvik; and,
WHEREAS: In 2011, the Council, the Newtok Native Corporation and the agencies and organizations involved in the Newtok Planning Group began working with a contractor to develop a Strategic Management Plan for the relocation of Newtok to Mertarvik.

NOW, THEREFORE, LET IT BE RESOLVED: that the Council hereby adopts the following Maligtaquyarat (Guiding Principles, attached) for all agencies and organizations to follow in working with Newtok on the relocation to Mertarvik. The Maligtaquyarat form the basis of our Strategic Management Plan. It is the Newtok Traditional Council's desire that the relocation of Newtok be defined by our Yup'ik way of life. All proposals for and activities at the new village at Mertarvik must consider, respect, be assessed by, and be carried out according to Newtok's Guiding Principles.

I the undersigned, hereby certify that the Newtok Traditional Council is composed of 7 members, of whom 7 constituting a QUORUM were present and that the foregoing resolution was PASSED AND APPROVED on this 27 day of March, 2012.

Votes: ___ Yeas ___ Nays

Signed: ________________________________
Honorable Moses Carl, President, Newtok Traditional Council

Attest: ________________________________
Andy Patrick, Secretary, Newtok Traditional Council
Strategic Management Plan :: Newtok to Mertarvik

FINAL DRAFT March 2012
by the Community of Newtok and the Newtok Planning Group,
Prepared for the Department of Commerce, Community, and Economic
Development, Division of Community and Regional Affairs by Agnew::Beck
Consulting with PDC Engineers and USKH Inc.
Memorandum to File

Coastal Barrier Resources Act

Environmental Record Determination

Alaska has no known or designated Coastal Barrier areas.

Source Documentation

- US Dept. of Fish and Wildlife Service Coastal Barrier Resources System
Overview

In the 1970s and 1980s, Congress recognized that certain actions and programs of the Federal Government have historically subsidized and encouraged development on coastal barriers, resulting in the loss of natural resources; threats to human life, health, and property; and the expenditure of millions of tax dollars each year. To remove the federal incentive to develop these areas, the Coastal Barrier Resources Act (CBRA) of 1982 designated relatively undeveloped coastal barriers along the Atlantic and Gulf coasts as part of the John H. Chafee Coastal Barrier Resources System (CBRS), and made these areas ineligible for most new federal expenditures and financial assistance. CBRA encourages the conservation of hurricane prone, biologically rich coastal barriers by restricting federal expenditures that encourage development, such as federal flood insurance. Areas within the CBRS can be developed provided that private developers or other non-federal parties bear the full cost.

CBRS Mapping Projects by State

Click on a state in the table below to see the CBRS mapping project(s) affecting each state.

<table>
<thead>
<tr>
<th>Alabama</th>
<th>Connecticut</th>
<th>Delaware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>Georgia</td>
<td>Louisiana</td>
</tr>
<tr>
<td>Maine</td>
<td>Maryland</td>
<td>Massachusetts</td>
</tr>
<tr>
<td>Michigan</td>
<td>Minnesota</td>
<td>Mississippi</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Ohio</td>
<td>Puerto Rico</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>South Carolina</td>
<td>Texas</td>
</tr>
<tr>
<td>Virgin Islands</td>
<td>Virginia</td>
<td>Wisconsin</td>
</tr>
</tbody>
</table>

Public Comment Period Closed for CBRS Maps in Gulf and Bay Counties, Florida and Monmouth and Middlesex Counties, New Jersey

The U.S. Fish and Wildlife Service (Service) held a 45-day comment period for six John H. Chafee Coastal Barrier Resources System (CBRS) draft revised maps. The draft maps, dated May 16, 2016, are for four CBRS units located in Gulf and Bay Counties, Florida, and for six CBRS units located in Monmouth and Middlesex Counties, New Jersey. We invited the public to review the draft maps and provide input to the Service. The Service will make any appropriate changes based on the comments received and will prepare final revised maps upon publication of a second notice in the Federal Register (81 FR 13407) on March 14, 2016. Click here to access the final revised maps and for more information.

Final Digital Conversion Maps Available for CBRS Units in 10 States

The U.S. Fish and Wildlife Service (Service) has conducted a digital conversion and 5-year review and prepared final revised maps for all of the John H. Chafee Coastal Barrier Resources System units in Alabama, Georgia, Michigan, Minnesota, Mississippi, Ohio, Wisconsin, the Great Lakes region of New York, 125 units in Florida, and 7 units in Louisiana. We held a 30-day comment period on the draft maps for Federal, State, and local stakeholders, from November 17, 2015 through December 17, 2015. Several comments were received from stakeholders during the comment period. The Service assessed the comments received during the comment period and officially adopted the final revised maps upon publication of a second notice in the Federal Register (81 FR 13407) on March 14, 2016. Click here to access the final revised maps and for more information.
Coastal Barrier Resources System

About
Overview
Meet the Staff
Contact Us
Glossary

Library
 Ecological Services Documents
 Federal Register Notices

Species
 Endangered Species
 Exotic Species
 Marine Mammals

Wildlife and Habitat Conservation
 Wetlands
 Coastal Barrier Resources System
 Conservation Planning
 Natural Resource Damage Assessment
 Spill Response
 Contaminants

Development and Energy
 Transportation Planning
 Visitor Resource Development
 Energy

FWS Regions
 Pacific (Region 1)
 Southwest (Region 2)
 Great Lakes (Region 3)
 Southwest (Region 4)
 Northeast (Region 5)
 Mountain Prairie (Region 6)
 Alaska (Region 7)
 Pacific States (Region 8)
 Headquarters

https://www.fws.gov/ecological-services/habitat-conservation/coastal.html

9/12/2016
Coastal Barrier Resources System

Ecological Services

The John H. Chafee Coastal Barrier Resources System (CBRS) is a collection of specific units of land and associated aquatic habitats that serve as barriers protecting the Atlantic, Gulf, and Great Lakes coasts. The CBRS currently includes 585 System units, which comprise nearly 1.3 million acres of land and associated aquatic habitat. There are also 274 "otherwise protected areas," a category of coastal barriers already held for conservation purposes that include an additional 1.9 million acres of land and associated aquatic habitat.

Step 1: Use the CBRA Online Mapper or the State Locator Maps (PDF format) below to find a unit name(s).

Step 2: Download Official CBRS Maps (PDF format).

To download a map, click on a file name to save it, then open the file with a PDF viewer or editor.

Memorandum to File

Executive Order 11988 Floodplain Management

Environmental Record Determination

Area is not prone to flooding, see topo maps; not participating in the National Floodplain Insurance Program; new undeveloped site is not within a known 100/500 year floodplain, unmapped by FEMA

Source Documentation

FEMA Map
Topography Map of Metarvik
Who in Alaska participates in the NFIP
Floodplain Management Checklist
FEMA Flood Map Service Center: Search By Address

Enter an address, place, or coordinates:

newtok, alaska

The buttons below let you view and print the selected flood map, download the flood map image, open an interactive flood map (if available), or expand the search to all products to view effective, preliminary, pending, or historic maps, and risk products for the community. The locator map shows flood map boundaries in your area of interest. You can choose a new flood map by clicking elsewhere on the locator map or entering a new location in the search box.

Search Results—Products for BETHEL

FEMA has not completed a study to determine flood hazard for the selected location; therefore, a flood map has not been published at this time.

Locator Map

Show all products this area (https://msc.fema.gov/portal/availability?addcommunity=02050C&community=1)

Share This Page.

Official website of the Department of Homeland Security
U.S. Army Corps of Engineers, Alaska District
PRECONSTRUCTION NOTIFICATION FORM

May be used instead of Form ENG 4345 to request verification under a Nationwide Permit (NWP)

<table>
<thead>
<tr>
<th>Applicant: AVCP Regional Housing Authority</th>
<th>Phone: 907-543-3121</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address: PO Box 767</td>
<td>Fax: 907-543-4020</td>
</tr>
<tr>
<td>City, State, Zip: Bethel, AK 99559</td>
<td>Cell/Direct Line: 907-543-1343</td>
</tr>
</tbody>
</table>

Point of Contact: Mark Charlie
e-mail: mark@avcphousing.org

<table>
<thead>
<tr>
<th>Agent: N/A</th>
<th>Phone:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td>Fax:</td>
</tr>
<tr>
<td>City, State, Zip:</td>
<td>Cell/Direct Line:</td>
</tr>
<tr>
<td>Point of Contact:</td>
<td>e-mail:</td>
</tr>
</tbody>
</table>

Location of the Proposed Project Site:
- **Nearest Waterway:** Confluence of Ninglick River and Baird Inlet
- **Section, Township, Range, and Meridian:** Sec. 34, T9N, R86W and Sec. 2, T8N, R87W, Seward Meridian
- **Latitude and Longitude (Decimal Degrees, NAD-83):**
- **Nearest City:** Newtok, AK
- **Subdivision:** N/A
- **Borough:** N/A
- **USGS Quad(s):**
- **Driving Directions to Site:** N/A

Project Description:

To ensure your project meets the requirements for a NWP, read all of the NWP General Conditions and Regional Conditions, which can be found on our website at http://www.usa.army.mil/permits.htm#Nationwide Permits

Description of the proposed project, including the area of impacts and the volume of fill material to be used (If there is a NWP that you think would apply to your proposed project, please include that in this section):

Construction of 2 housing units in the new village of Mertarvik, AK. The units will be built on post and pad foundations, therefore an unknown amount of fill material consisting of gravel will be used on the pads.

Project purpose: Provide housing to 2 families that move to Mertarvik

Describe any direct and/or indirect adverse environmental effects that may result from the proposed project:

None
Do you intend to use any other authorizations for any part of the proposed project or any related activity, for example, a NWP, General Permit (GP), or Individual Permit (IP)?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

If YES, specify what permit type (NWP, GP, IP) and for what aspect of the project:

Will your proposed project result in the loss of greater than 1/10 of an acre of wetlands?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

If YES, describe how you will satisfy the mitigation requirement in Nationwide Permit General Condition 23 (attached). If additional space is needed, please attach sheets.

Are there any listed species or designated critical habitat that might be affected or is in the vicinity of the project, or is the project located in designated critical habitat? Federal agencies must provide the appropriate documentation to demonstrate compliance with the agency's procedures for compliance with the ESA. Information on the location of threatened or endangered species and their critical habitat can be obtained directly from the offices of the U.S. Fish and Wildlife Service and the National Marine Fisheries Service.

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

If YES, list all species:

Are there historic properties (listed on, determined to be eligible for listing on, or potentially eligible for listing on the National Register of Historic Places, including previously unidentified properties) that the proposed activity may have the potential to effect? Federal agencies must provide documentation demonstrating compliance with the Section 106 of the National Historic Preservation Act. Assistance regarding information on the location of or potential for the presence of historic resources can be sought from the State Historic Preservation Officer.

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

If YES, state which property or properties may be affected and/or attach a vicinity map indicating the location of the historic property or properties.

Will the proposed work involve ground disturbing activities?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

If YES, attach a short narrative describing the topsoil or organic materials (including seed) that you intend to use for rehabilitation. If you intend to use other locally-obtained native materials, identify the source.

Attach the following in addition to the above applicable items:

- Drawings of the site and project plans (For more information on acceptable drawings and plans, please visit our website at http://www.poa.usace.army.mil/permits/permits.htm and click on “Guide to Drawings”)
- The PCN must include a delineation of wetlands, other special aquatic sites (riffe and pool complexes, sanctuaries and refuges, mudflats, vegetated shallows, and/or coral reefs), and other waters, such as lakes and ponds, and perennial, intermittent, and ephemeral streams, on the project site. Wetland delineations must be prepared in accordance with the current method required by the Corps. The applicant may request the Corps to delineate the special aquatic sites and other waters and if the PCN does not include a delineation we will take that to mean you are requesting the Corps for one. In these cases, the PCN will not be considered complete until we complete the delineation.

Note: If you request a Corps delineation, you may be delayed in receiving authorization for your proposed project.

Application is hereby made for a permit or permits to authorize the work described in this preconstruction notification form.
I certify the information in this preconstruction notification form is complete and accurate. I further certify that I possess the authority to undertake the work described herein or am acting as the duly authorized agent of the applicant.

Signature of Applicant: [signature] Date: [date]

Signature of Agent: [signature] Date: [date]
NATIONWIDE PERMIT GENERAL CONDITION 23: MITIGATION

The district engineer will consider the following factors when determining appropriate and practicable mitigation necessary to ensure that adverse effects on the aquatic environment are minimal:

(a) The activity must be designed and constructed to avoid and minimize adverse effects, both temporary and permanent, to waters of the United States to the maximum extent practicable at the project site (i.e., on site).

(b) Mitigation in all its forms (avoiding, minimizing, rectifying, reducing, or compensating for resource losses) will be required to the extent necessary to ensure that the adverse effects to the aquatic environment are minimal.

(c) Compensatory mitigation at a minimum one-for-one ratio will be required for all wetland losses that exceed 1/10-acre and require preconstruction notification, unless the district engineer determines in writing that either some other form of mitigation would be more environmentally appropriate or the adverse effects of the proposed activity are minimal, and provides a project-specific waiver of this requirement. For wetland losses of 1/10-acre or less that require pre-construction notification, the district engineer may determine on a case-by-case basis that compensatory mitigation is required to ensure that the activity results in minimal adverse effects on the aquatic environment. Compensatory mitigation projects provided to offset losses of aquatic resources must comply with the applicable provisions of 33 CFR part 332.

1. The prospective permittee is responsible for proposing an appropriate compensatory mitigation option if compensatory mitigation is necessary to ensure that the activity results in minimal adverse effects on the aquatic environment.

2. Since the likelihood of success is greater and the impacts to potentially valuable uplands are reduced, wetland restoration should be the first compensatory mitigation option considered.

3. If permittee-responsive mitigation is the proposed option, the prospective permittee is responsible for submitting a mitigation plan. A conceptual or detailed mitigation plan may be used by the district engineer to make the decision on the NWP verification request, but a final mitigation plan that addresses the applicable requirements of 33 CFR 332.4(c)(2)-(14) must be approved by the district engineer before the permittee begins work in waters of the United States, unless the district engineer determines that prior approval of the final mitigation plan is not practicable or not necessary to ensure timely completion of the required compensatory mitigation (see 33 CFR 332.3(k)(3)).

4. If mitigation bank or in-lieu fee program credits are the proposed option, the mitigation plan only needs to address the baseline conditions at the impact site and the number of credits to be provided.

5. Compensatory mitigation requirements (e.g., resource type and amount to be provided as compensatory mitigation, site protection, ecological performance standards, monitoring requirements) may be addressed through conditions added to the NWP authorization, instead of components of a compensatory mitigation plan.

(d) For losses of streams or other open waters that require pre-construction notification, the district engineer may require compensatory mitigation, such as stream rehabilitation, enhancement, or preservation, to ensure that the activity results in minimal adverse effects on the aquatic environment.

(e) Compensatory mitigation will not be used to increase the acreage losses allowed by the acreage limits of the NWPs. For example, if an NWP has an acreage limit of 1/2-acre, it cannot be used to authorize any project resulting in the loss of greater than 1/2-acre of waters of the United States, even if compensatory mitigation is provided that replaces or restores some of the lost waters. However, compensatory mitigation can and should be used, as necessary, to
ensure that a project already meeting the established acreage limits also satisfies the minimal impact requirement associated with the NWPs.

(f) Compensatory mitigation plans for projects in or near streams or other open waters will normally include a requirement for the restoration or establishment, maintenance, and legal protection (e.g., conservation easements) of riparian areas next to open waters. In some cases, riparian areas may be the only compensatory mitigation required. Riparian areas should consist of native species. The width of the required riparian area will address documented water quality or aquatic habitat loss concerns. Normally, the riparian area will be 25 to 50 feet wide on each side of the stream, but the district engineer may require slightly wider riparian areas to address documented water quality or habitat loss concerns. If it is not possible to establish a riparian area on both sides of a stream, or if the waterbody is a lake or coastal waters, then restoring or establishing a riparian area along a single bank or shoreline may be sufficient. Where both wetlands and open waters exist on the project site, the district engineer will determine the appropriate compensatory mitigation (e.g., riparian areas and/or wetlands compensation) based on what is best for the aquatic environment on a watershed basis. In cases where riparian areas are determined to be the most appropriate form of compensatory mitigation, the district engineer may waive or reduce the requirement to provide wetland compensatory mitigation for wetlands losses.

(g) Permittees may propose the use of mitigation banks, in-lieu fee programs, or separate permittee-responsible mitigation. For activities resulting in the loss of marine or estuarine resources, permittee-responsible compensatory mitigation may be environmentally preferable if there are no mitigation banks or in-lieu fee programs in the area that have marine or estuarine credits available for sale or transfer to the permittee. For permittee-responsible mitigation, the special conditions of the NWP verification must clearly indicate the party or parties responsible for the implementation and performance of the compensatory mitigation project, and, if required, its long-term management.

(h) Where certain functions and services of waters of the United States are permanently adversely affected, such as the conversion of a forested or scrub-shrub wetland to a herbaceous wetland in a permanently maintained utility line right-of-way, mitigation may be required to reduce the adverse effects of the project to the minimal level.
Mr. Mark Charlie
AVCP Regional Housing Authority
PO Box 767
Bethel, Alaska 99559

Dear Mr. Charlie:

This letter is in response to your May 24, 2016, request for a Department of the Army (DA) jurisdictional determination for your proposed **Newtok relocation** project. The project is located within Section 34, T. 9 N., R. 86 W., and Section 2, T. 8 N., R. 87 W Seward Meridian, USGS Baird Inlet D-7; at Latitude 60.8199° N., Longitude 164.5062° W.; near Newtok, Alaska. Your project has been assigned number POA-2016-329, Baird Inlet, which should be referred to in all correspondence with us.

Based on our review of the information you provided and available to our office, and/or on our site visit dated 2006, we have preliminarily determined the subject project area contains waters of the U.S., and/or wetlands, under the Corps' regulatory jurisdiction. See the attached Preliminary Jurisdictional Determination (PJD) Form. Please sign and return the form to our office. A PJD is not appealable. At any time you have the right to request and obtain an Approved Jurisdictional Determination, which can be appealed. If it is your intent to request an Approved JD, do not begin work until one is obtained.

Section 404 of the Clean Water Act requires that a DA permit be obtained for the placement or discharge of dredged and/or fill material into waters of the U.S., including jurisdictional wetlands (33 U.S.C. 1344). The Corps defines wetlands as those areas that are inundated or saturated by surface or groundwater at a frequency and duration
sufficient to support, and under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions.

Nothing in this letter excuses you from compliance with other Federal, State, or local statutes, ordinances, or regulations.

If you have questions or to request a paper copy of the DA permit application, please contact me via email at mary.r.romero@usace.army.mil, by mail at the address above, by phone at (907) 753-2773, or toll free from within Alaska at (800) 478-2712. For more information about the Regulatory Program, please visit our website at http://www.poa.usace.army.mil/Missions/Regulatory.aspx.

Sincerely,

Mary Romero
Project Manager

Enclosures

CF: North Branch

ADEC
ADEC
ADF&G-DH, Fairbanks
ADNR-DMLW, Anchorage
ADNR-DMLW, Anchorage (south of AK Range)
ADNR-DMLW
SHPO, ADNR OHA
EPA
USFWS

james.rypkema@alaska.gov
shannon.dewandel@alaska.gov
audra.brase@alaska.gov
dnr.scro.dcom.cor@alaska.gov
Michael.walton@alaska.gov
jusdi.mcdonald@alaska.gov
oha.revcomp@alaska.gov
AOOARU.R10@epamail.epa.gov
FW7_POANotices@fws.gov

'Walter Jim' <WJim@avcp.housing.org>; Concepcion, Andy <andy.concepcion@hud.gov>
<table>
<thead>
<tr>
<th>Site Number</th>
<th>Latitude/Northing</th>
<th>Longitude/Easting</th>
<th>Cowardin Class/Stream Flow</th>
<th>Estimated Amount of Aquatic Resource in Review Area</th>
<th>Class of Aquatic Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newtok relocation - Mertarvik PSS wetlands</td>
<td>60.8199</td>
<td>-164.5062</td>
<td></td>
<td>25 acres</td>
<td>Section 404</td>
</tr>
</tbody>
</table>
PRELIMINARY JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR PRELIMINARY JURISDICTIONAL DETERMINATION (JD): July 18, 2016

B. NAME AND ADDRESS OF PERSON REQUESTING PRELIMINARY JD:
Mark Charlie
AVCP Regional Housing Authority
PO Box 767
Bethel, Alaska 99559

C. DISTRICT OFFICE, FILE NAME, AND NUMBER: POA-RD, POA-

D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION:
(USE THE ATTACHED TABLE TO DOCUMENT MULTIPLE WATERBODIES AT DIFFERENT SITES)
State: Alaska
Borough: Bethel
City: Mertarvik
Center coordinates of site: Universal Transverse Mercator:
Latitude 60.8199 ° N
Longitude 164.5062 ° W

Authority: ✔ Section 404
☐ Section 10

Name of nearest waterbody: Baird Inlet
Identify (estimate) amount of waters in the review area:
Non-wetland waters: linear feet: # width (ft) and/or # acres.
Cowardin Class: Choose Class
Stream Flow: Choose Flow
Wetlands: 25 acres.
Cowardin Class: Palustrine Scrub-shrub

Name of any water bodies on the site that have been identified as Section 10 waters:
Tidal: Waterbody
Non-Tidal: Waterbody

E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
✔ Office (Desk) Determination. Date: July 18, 2016
✔ Field Determination. Date(s): c 2006
1. The Corps of Engineers believes that there may be jurisdictional waters of the United States on the subject site, and the permit applicant or other affected party who requested this preliminary JD is hereby advised of his or her option to request and obtain an approved jurisdictional determination (JD) for that site. Nevertheless, the permit applicant or other person who requested this preliminary JD has declined to exercise the option to obtain an approved JD in this instance and at this time.

2. In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring “pre-construction notification” (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an approved JD for the activity, the permit applicant is hereby made aware of the following: (1) the permit applicant has elected to seek a permit authorization based on a preliminary JD, which does not make an official determination of jurisdictional waters; (2) that the applicant has the option to request an approved JD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an approved JD could possibly result in less compensatory mitigation being required or different special conditions; (3) that the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) that the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) that undertaking any activity in reliance upon the subject permit authorization without requesting an approved JD constitutes the applicant's acceptance of the use of the preliminary JD, but that either form of JD will be processed as soon as is practicable; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a preliminary JD constitutes agreement that all wetlands and other water bodies on the site affected in any way by that activity are jurisdictional waters of the United States, and precludes any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an approved JD or a preliminary JD, that JD will be processed as soon as is practicable. Further, an approved JD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 334, and that in any administrative appeal, jurisdictional issues can be raised (see 33 C.F.R. §334.56(b)(2)). If, during that administrative appeal, it becomes necessary to make an official determination whether CWA jurisdiction exists over a site, or to provide an official delineation of jurisdictional waters on the site, the Corps will provide an approved JD to accomplish that result, as soon as is practicable. This preliminary JD finds that there “may be” waters of the United States on the subject project site, and identifies all aquatic features on the site that could be affected by the proposed activity, based on the following information:
SUPPORTING DATA. Data reviewed for preliminary JD (check all that apply)
- checked items should be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Click here to enter text.
☐ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
 ☑ Office concurs with data sheets/delineation report.
 ☐ Office does not concur with data sheets/delineation report.
☑ Data sheets prepared by the Corps: A JD was done by Marcia Heer/Estrella Campellone in c 2006
☐ Corps navigable waters’ study: Click here to enter text.
☐ U.S. Geological Survey Hydrologic Atlas: Click here to enter text.
 ☑ USGS NHD data.
 ☐ USGS 8 and 12 digit HUC maps.
☐ U.S. Geological Survey map(s). Cite scale & quad name: Click here to enter text.
☐ USDA Natural Resources Conservation Service Soil Survey. Citation: Click here to enter text.
☐ National wetlands inventory map(s). Cite name: Click here to enter text.
☐ State/Local wetland inventory map(s): Click here to enter text.
☐ FEMA/FIRM maps: Click here to enter text.
☐ 100-year Floodplain Elevation is: Click here to enter text.
(National Geodetic Vertical Datum of 1929)
☑ Photographs: ☑ Aerial (Name & Date): Google Earth/Regulatory SimSuite July 2016
 ☐ or ☑ Other (Name & Date): photos taken on site c 2006
☐ Applicable/supporting case law: Click here to enter text.
☐ Applicable/supporting scientific literature: Click here to enter text.
☐ Other information (please specify): Click here to enter text.

IMPORTANT NOTE: THE INFORMATIONRecorded on this form has not necessarily been verified by the Corps and should not be relied upon for later jurisdictional determinations.

[Signature and date of person requesting preliminary JD (REQUIRED, unless obtaining the signature is impracticable)]
May 24, 2016

Dear Mr. Winn,

The Association of Village Council Presidents will be assisting the Native Village of Newtok in constructing (2) single family dwelling units using Title VI at the new village site in Mertarvik, Alaska.

The proposed new village site of Mertarvik is the location where the Native Village of Newtok will also be relocating (12) homes. This site encompasses the Village Center, Phase 1 and Phase 2 for proposed housing units. The gravel source for these future projects is located approximately 2 miles southwest of this new site and this quarry road will need to be developed. This undeveloped new site will need gravel to develop access roads, roads between lots within phase 1 and phase 2, roads within the village center and all easements.

Total area encompassing the development of Phase I which includes the road to the Quarry is approximately 16,750 feet of road or equal to 3.17 miles. House Lot sizes are approximately 0.75 acres. Inside Phase I of the subdivision there will be 25 Lots for homes. The Village Center consists of structures that will include the fuel tank farm, power plant, multi-purpose building, washteria/water plant, water well, tribal hall, church, public safety building, community gym, clinic, post office, library, store, school and teacher housing. The total length of roads inside the subdivision of Phase I is approximately 14,345 feet or equal to 2.71 miles.

The Native Village of Newtok Traditional Council requests for a “Jurisdictional Determination” that the proposed project has “no effect” on wetlands.

The proposed project consists of constructing (2) single-family housing units at the new site of Mertarvik and relocating (12) homes from Newtok to Mertarvik.

The Native Village of Newtok Traditional Council requests concurrence with this determination from
the Alaska District, U.S. Army Corps of Engineers.

A current map of the proposed new village is enclosed for your review.

Your reply must be in writing and forwarded to:

Association of Village Council Presidents Regional Housing Authority
C/O Walter Jim
P.O. Box 767
Bethel, Alaska 99559

If you have any questions please do not hesitate to contact me at (907) 543-1323.

Sincerely,

Walter Jim
Development Planner
June 7, 2016

Doug Cooper
Fish and Wildlife Field Office
4700 BLM Road
Anchorage, Alaska 99507

Re: (2) New single 3 to 4 family dwelling units at Mertarvik, Alaska under Title VI, relocating 12 homes and future development.

Dear Mr. Cooper,

The Association of Village Council Presidents will be assisting the Native Village of Newtok in constructing (2) single family dwelling units using Title VI at the new village site in Mertarvik, Alaska.

The proposed new village site of Mertarvik is the location where the Native Village of Newtok will also be relocating (12) homes. This site encompasses the Village Center, Phase 1 and Phase 2 for proposed housing units. The gravel source for these future projects is located approximately 2 miles southwest of this new site and this quarry road will need to be developed. This undeveloped new site will need gravel to develop access roads, roads between lots within phase 1 and phase 2, roads within the village center and all easements.

Total area encompassing the development of Phase I which includes the road to the Quarry is approximately 16,750 feet of road or equal to 3.17 miles. House Lot sizes are approximately 0.75 acres. Inside Phase I of the subdivision there will be 25 Lots for homes. The Village Center consists of structures that will include the fuel tank farm, power plant, multi-purpose building, washeteria/water plant, water well, tribal hall, church, public safety building, community gym, clinic, post office, library, store, school and teacher housing. The total length of roads inside the subdivision of Phase I is approximately 14,345 feet or equal to 2.71 miles.

We are asking for a determination that this new proposed site of Mertarvik will have “no effect” on any listed species.

The proposed project consists of constructing (2) single-family housing units at the new site of Mertarvik and relocating (12) homes from Newtok to Mertarvik.

The Native Village of Newtok Traditional Council requests concurrence with this determination from the U.S. Fish and Wildlife Service.

A current map of the proposed new village is enclosed for your review.
Your reply must be in writing and forwarded to:

Association of Village Council Presidents Regional Housing Authority
C/O Walter Jim
P.O. Box 767
Bethel, Alaska 99559

If you have any questions please do not hesitate to contact me at (907) 543-1323.

Sincerely,

Walter Jim
Development Planner
TOXIC CHEMICALS AND RADIOACTIVE MATERIALS
Memorandum to File

Toxic Chemicals and Radioactive Materials

Environmental Record Determination

Metarvik sits on largely undeveloped land not known or suspected of having any toxic and/or radioactive materials.

Metarvik is not listed or located within one mile of an EPA Superfund Site or within 2000 feet of a site on the CERCLIS List.

Metarvik is not located within 3000 feet of a toxic or solid waste land fill. Any future proposed solid waste landfills will be located further than 3000 feet from any properties projected for use in HUD programs.

Source Documentation

- State of Alaska Division of Spill Prevention and Response Contaminated Sites Search – No results for Metarvik

- United States Environmental Protection Agency – EPA Superfund Sites Search – No results for Metarvik

- United States Environmental Protection Agency – Alaska Cleanup Sites
WELCOME

Program Manager:
Jennifer Roberts (907) 269-7553

The Contaminated Sites Program protects human health and the environment by managing the cleanup of contaminated soil and groundwater in Alaska.

ABOUT CS

- Contact Information
- Core Services
- Program Annual Report
- Frequently Asked Questions
- Sign up for our Email List
- SPAR Annual Report

BROWNFIELDS

- Brownfield Homepage
- DEC Brownfield Projects in Alaska
- DEC Brownfield Assessments and Cleanups (DBACs)
- Newsletters
- Brownfield Handbook

UNDERGROUND STORAGE TANKS

- Underground Storage Tanks Homepage

REGULATIONS AND TECHNICAL GUIDANCE

- Current Regulations and Statutes, and Proposed Regulation Changes
- Technical Guidance
- Method Three Calculator

RESOURCES FOR SITE CLEANUP

- The Cleanup Process
- Fact Sheets and Publications
- Environmental Consultants
- Institutional Controls Information
- Other Resources

STATE/PRIVATE CLEANUP

- State, Local and Private Sites
- Leaking Underground Storage Tanks

FEDERAL FACILITIES CLEANUP

- Federal Facilities Overview
- Department of Defense Cleanup
- Civilian Federal Agency Sites
- Community Involvement for Federal Facilities

RESEARCH

- Contaminated Sites Database
- Map of Contaminated Sites
- Contaminated Site Summaries

OF INTEREST

- Contaminated Real Estate New!
- Vapor Intrusion
- North Pole Sulfolane
- Areawide Investigations

HOW DO I...

- Learn about the Cleanup Process
- Search for Contaminated Sites
- Find Fact Sheets and Publications
- Qualify as an Environmental Professional or Sampler

CONTAMINATED SITES WEB MAP

Report a Spill

http://dec.alaska.gov/spar/csp/ 9/12/2016
Contaminated Sites Search

<table>
<thead>
<tr>
<th>Hazard ID</th>
<th>Site Name</th>
<th>Location</th>
<th>Status</th>
<th>File ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Results Found</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disclaimer. DEC makes every effort to ensure the data presented here is accurate based on the best available information currently on file with DEC. It is therefore subject to change as new information becomes available. We recommend contacting the assigned project staff prior to making decisions based on this information.

Note: DEC's Contaminated Sites program has changed the terms used to describe closure, replacing 'closed' and 'conditionally closed' with 'Cleanup Complete' and 'Cleanup Complete - Institutional Controls.'

DEC gives 'Cleanup Complete' status when efforts to reduce hazardous substance contamination have achieved the most stringent levels established in state regulation, or the possibility of human exposure to any residual contamination is highly unlikely. The Department may allow hazardous substances to remain in the environment at a site if the contamination does not pose a risk to human health or the environment, but there may be conditions or restrictions associated with the site that require compliance by current or future owners/operators. Those conditions or restrictions require follow-up reporting, the department would then grant a 'Cleanup Complete - Institutional Controls' status (See 'Institutional Controls.')

Details on closure of any site are viewable on the Contaminated Sites database. A special report on Institutional Controls is available for sites with that designation.

For information specific to a site, please contact the staffperson assigned, as noted in the upper right area of each site cleanup chronology.

For CSP database support please contact: Evonne Reese at (907) 465-5229.
Superfund: Protecting Human Health and the Environment for 35 Years!

Learn more about how Superfund cleanups have made a visible difference in communities.

EPA’s Superfund program is responsible for cleaning up some of the nation’s most contaminated land and responding to environmental emergencies, oil spills and natural disasters. To protect public health and the environment, the Superfund program focuses on making a visible and lasting difference in communities, ensuring that people can live and work in healthy, vibrant places.

Learn About Superfund

- Sites where you live
- Cleanup process
- History
- Superfund 35th Anniversary

Community Involvement

- Technical assistance
- Community Advisory Groups
- Superfund Job Training Initiative
- Tools and resources
- Citizen excellence
- Training conference

Cleanup Support

- Training and learning
- Green remediation
- Climate change adaptation
- Cleanup optimization
- Natural Resource Damages

Accomplishments & Benefits

- Annual accomplishments
- Performance measures
- Community benefits
Superfund

Search Superfund Documents

Follow the links below to search for Superfund documents in specific areas:

- Decision Documents
- Five-Year Review (FYRs)
- National Remedy Review Board Site Reviews
- Contaminated Sediments Technical Advisory Group Site Reviews
- Remedial Investigation / Feasibility Study
- Remedy Decision Policy and Guidance
- Remedial Design / Remedial Action

- Hazard Ranking System Toolbox
- Federal Register Notices for NPL Updates
- Contaminants
- Contaminated Media
- Community Involvement Toolkit
- Reuse In-Depth Case Studies
- Reuse "How-To" Reports
- Relocation Policy

Search all documents from Headquarters collections below. Note: the table below excludes FYRs and Decision Documents; see the FYR and Decision Documents links listed above.

Show [10] entries

Search for Superfund Documents

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Date</th>
<th>Document ID</th>
<th>Site Name (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No matching records found

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Date</th>
<th>Document ID</th>
<th>Site Name (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Showing 0 to 0 of 0 entries (filtered from 7,862 total entries)

Last updated on August 3, 2016

Superfund

Contaminants at Superfund Sites

This page contains links to Superfund contaminant-specific websites and information on common contaminants found at Superfund sites.

Lead - Lead contamination at Superfund sites presents a threat to human health and the environment. This website describes EPA's approach to addressing those risks, and the challenges of remediating lead contamination at Superfund sites, and includes information on human health effects, lead risk assessment, software, user manuals, guidance, frequent questions, and technical assistance.

Asbestos - This page contains information regarding addressing asbestos contamination at Superfund sites, which includes policy and guidance, technical assistance, health effects, and naturally occurring asbestos.

Dioxin - Provides information on characterization of dioxin contaminated soil.

Soil Bioavailability - This Web area describes how EPA is incorporating relative bioavailability information for human exposures at Superfund sites exposed to soil contaminants via oral pathway.

Radiation - This page contains information regarding addressing radiation contamination at Superfund sites, which includes frequently used guidance documents and reports.

Contaminants Documents

Search Tip: Type the document title in the search box to filter results

Search: metarvik

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Collections</th>
<th>Date</th>
<th>Document ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>No matching records found</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Showing 0 to 0 of 0 entries

https://www.epa.gov/superfund/contaminants-superfund-sites
Superfund

Search for Superfund Sites Where You Live

Locate Additional Site Information

- Advanced search: for NPL and non-NPL Superfund sites (advanced queries)
- Cleanups in my Community mapped search (includes Superfund and other EPA sites or facilities)

Additional Superfund site-related content:
- Ambler Asbestos
- GE-Pittsfield/Housatonic River Site
- Lindsay Light Superfund Sites
- Grants Mining District in New Mexico

Search for National Priority List (NPL) Supersite

1. Including proposed, final and deleted NPL sites and non-NPL Superfund Alternative Approach (SAA) sites

By default, all NPL sites appear. Click an EPA region on the map to display sites in a particular region (1-10).

Select a State
After you select a link, press go to jump to Superfund sites for that State.

https://www.epa.gov/superfund/search-superfund-sites-where-you-live
Search for Superfund Sites Where You Live

Locate Additional Site Information

• Advanced search: for NPL and non-NPL Superfund sites (advanced queries)
• Cleanups in my Community mapped search (includes Superfund and other EPA sites or facilities)

Additional Superfund site-related content:

• Ambler Asbestos
• GE-Pittsfield/Housatonic River Site
• Lindsay Light Superfund Sites
• Grants Mining District in New Mexico

Search for National Priority List (NPL)¹ Superfund Sites

1. Including proposed, final and deleted NPL sites and non-NPL Superfund Alternative Approach (SAA) sites

By default, all NPL sites appear. Click an EPA region on the map to display sites in a particular region (1-10).
Select a State
After you select a link, press go to jump to Superfund sites for that State.

Region 10 Selected

Show All Regions

Show 10 entries

<table>
<thead>
<tr>
<th>Region</th>
<th>City</th>
<th>County</th>
<th>State</th>
<th>Zip Code</th>
<th>Site Name</th>
<th>NPL Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 10</td>
<td>ADAK</td>
<td>[Blank County]</td>
<td>Alaska</td>
<td>99546</td>
<td>ADAK NAVAL AIR STATION</td>
<td>Final</td>
</tr>
<tr>
<td>+ 10</td>
<td>FAIRBANKS</td>
<td>FAIRBANKS NORTH STAR</td>
<td>Alaska</td>
<td>99701</td>
<td>ALASKA BATTERY ENTERPRISES</td>
<td>Deleted</td>
</tr>
<tr>
<td>+ 10</td>
<td>ANCHORAGE</td>
<td>ANCHORAGE</td>
<td>Alaska</td>
<td>99501</td>
<td>ALASKA RAILROAD ANCHORAGE YARD</td>
<td>non-NPL</td>
</tr>
<tr>
<td>+ 10</td>
<td>FAIRBANKS</td>
<td>[Blank County]</td>
<td>Alaska</td>
<td>99701</td>
<td>ARCTIC SURPLUS</td>
<td>Deleted</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>City</th>
<th>County</th>
<th>State</th>
<th>Zip Code</th>
<th>Site Name</th>
<th>NPL Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>FAIRBANKS</td>
<td>FAIRBANKS NORTH STAR</td>
<td>Alaska</td>
<td>99702</td>
<td>EIELSON AIR FORCE BASE</td>
<td>Final</td>
</tr>
<tr>
<td>+</td>
<td>ANCHORAGE</td>
<td>[Blank County]</td>
<td>Alaska</td>
<td>99506</td>
<td>ELMENDORF AIR FORCE BASE</td>
<td>Final</td>
</tr>
<tr>
<td>+</td>
<td>ANCHORAGE</td>
<td>[Blank County]</td>
<td>Alaska</td>
<td>99505</td>
<td>FORT RICHARDSON (USARMY)</td>
<td>Final</td>
</tr>
<tr>
<td>+</td>
<td>FORT WAINWRIGHT</td>
<td>[Blank County]</td>
<td>Alaska</td>
<td>99703</td>
<td>FORT WAINWRIGHT</td>
<td>Final</td>
</tr>
<tr>
<td>+</td>
<td>THORNE BAY</td>
<td>[Blank County]</td>
<td>Alaska</td>
<td>99919</td>
<td>SALT CHUCK MINE</td>
<td>Final</td>
</tr>
<tr>
<td>+</td>
<td>ANCHORAGE</td>
<td>ANCHORAGE</td>
<td>Alaska</td>
<td>99501</td>
<td>STANDARD STEEL & METAL SALVAGE YARD (USDOT)</td>
<td>Deleted</td>
</tr>
</tbody>
</table>

Showing 1 to 10 of 110 entries (filtered from 1,844 total entries)

Previous

Last updated on August 12, 2016

Memorandum to File

Toxic Chemicals and Radioactive Materials

Environmental Record Determination

Metarvik sits on largely undeveloped land not known or suspected of having any toxic and/or radioactive materials.

Metarvik is not listed or located within one mile of an EPA Superfund Site or within 2000 feet of a site on the CERCLIS List.

Metarvik is not located within 3000 feet of a toxic or solid waste land fill. Any future proposed solid waste landfills will be located further than 3000 feet from any properties projected for use in HUD programs.

Source Documentation
- State of Alaska Division of Spill Prevention and Response Contaminated Sites Search
- United States Environmental Protection Agency – EPA Superfund Sites Search
- United States Environmental Protection Agency – Alaska Cleanup Sites
Use the table below to find information about EPA cleanup sites in Alaska.

Click on the small triangle near the column heading to sort the information by state, city, title (site name), type of site. Note: NPL = National Priorities List (aka “Superfund”). Sites not associated with any particular city will show near the bottom of the list.

<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
<th>Title</th>
<th>Type of Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>Adak</td>
<td>Adak Naval Air Station</td>
<td>NPL</td>
</tr>
<tr>
<td>Alaska</td>
<td>Fairbanks</td>
<td>Alaska Battery Enterprises</td>
<td>Deleted NPL</td>
</tr>
<tr>
<td>Alaska</td>
<td>Anchorage</td>
<td>Anchorage Terminal Reserve</td>
<td>NPL Equivalent</td>
</tr>
<tr>
<td>Alaska</td>
<td>Fairbanks</td>
<td>Arctic Surplus</td>
<td>NPL</td>
</tr>
<tr>
<td>Alaska</td>
<td>Fairbanks</td>
<td>Eielson Air Force Base</td>
<td>NPL</td>
</tr>
<tr>
<td>Alaska</td>
<td>Anchorage</td>
<td>Elmendorf Air Force Base</td>
<td>NPL</td>
</tr>
<tr>
<td>Alaska</td>
<td>Anchorage</td>
<td>Fort Richardson (USArmy)</td>
<td>NPL</td>
</tr>
<tr>
<td>Alaska</td>
<td>Fort Wainwright</td>
<td>Fort Wainwright</td>
<td>NPL</td>
</tr>
<tr>
<td>Alaska</td>
<td>Ketchikan</td>
<td>Ketchikan Pulp Company</td>
<td>NPL Equivalent</td>
</tr>
<tr>
<td>Alaska</td>
<td></td>
<td>RCRA Corrective Action Sites in Alaska</td>
<td>RCRA CA</td>
</tr>
<tr>
<td>Alaska</td>
<td>Prince of Wales Island</td>
<td>Salt Chuck Mine</td>
<td>NPL</td>
</tr>
<tr>
<td>Alaska</td>
<td>Anchorage</td>
<td>Standard Steel & Metals Salvage Yard (USDOT)</td>
<td>Deleted NPL</td>
</tr>
</tbody>
</table>
ENDANGERED SPECIES
Memorandum to File

Endangered Species Act of 1973

Environmental Record Determination

- United States Fish and Wildlife Service – Expected to have no effect on listed species, no further consultation is needed with the USFWS pursuant to the Endangered Species Act., email dated July 6, 2016 from Douglas Cooper, Branch Chief – Ecological Services.

- National Marine Fisheries Service – Will have no effect on species under the National Marine Fisheries Service’s jurisdiction that are listed under the Endangered Species Act., email dated July 27, 2016 from Jon Kurland, Assistant Regional Administrator for Protected Resources, NOAA Fisheries, Alaska Region

- Yukon Delta National Wildlife Refuge – Does not need further permitting requirements, per email dated July 22, 2016 from Kent Stahlnecker, Refuge Manager, Yukon Delta NWR

Source Documentation

- USFWS Listed species believed to or known to occur in Alaska

- National Marine Fisheries Service email dated July 27, 2016 from Jon Kurland, Assistant Regional Administrator for Protected Resources, NOAA Fisheries, Alaska Region

- Yukon Delta National Wildlife Refuge email dated July 22, 2016 from Kent Stahlnecker, Refuge Manager, Yukon Delta NWR
Listed species believed to or known to occur in Alaska

Notes:

- As of 02/13/2015 the data in this report has been updated to use a different set of information. Results are based on where the species is believed to or known to occur. The FWS feels utilizing this data set is a better representation of species occurrence. Note: there may be other federally listed species that are not currently known or expected to occur in this state but are covered by the ESA wherever they are found; Thus if new surveys detected them in this state they are still covered by the ESA. The FWS is using the best information available on this date to generate this list.
- This report shows listed species or populations believed to or known to occur in Alaska
- This list does not include experimental populations and similarity of appearance listings.
- This list includes species or populations under the sole jurisdiction of the National Marine Fisheries Service.
- Click on the highlighted scientific names below to view a Species Profile for each listing.

Listed species -- 12 listings
Animals -- 11 listings

<table>
<thead>
<tr>
<th>Status</th>
<th>Species/Listing Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Albatross, short-tailed Entire (Phoebastria (=Diomedea) albatrus)</td>
</tr>
<tr>
<td>T</td>
<td>Bear, polar Entire (Ursus maritimus)</td>
</tr>
<tr>
<td>T</td>
<td>Bison, wood Entire (Bison bison athabasca)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status</th>
<th>Species/Listing Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Eider, spectacled Entire (Somateria fischeri)</td>
</tr>
<tr>
<td>T</td>
<td>Eider, Steller's AK breeding pop. (Polysticta stelleri)</td>
</tr>
<tr>
<td>T</td>
<td>Otter, Northern Sea Southwest Alaska DPS (Enhydra lutris kenyoni)</td>
</tr>
<tr>
<td>E</td>
<td>Sea lion, Steller Western DPS (Eumetopias jubatus)</td>
</tr>
<tr>
<td>E</td>
<td>whale, beluga Cook Inlet DPS (Delphinapterus leucas)</td>
</tr>
<tr>
<td>E</td>
<td>Whale, blue Entire (Balaenoptera musculus)</td>
</tr>
<tr>
<td>E</td>
<td>Whale, bowhead Entire (Balaena mysticetus)</td>
</tr>
<tr>
<td>E</td>
<td>Whale, sperm Entire (Physeter catodon (=macrocephalus))</td>
</tr>
</tbody>
</table>

Plants -- 1 listings

<table>
<thead>
<tr>
<th>Status</th>
<th>Species/Listing Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Fern, Aleutian shield (Polystichum aleuticum)</td>
</tr>
</tbody>
</table>
Hi Jim,

Sorry for the delayed response. Based on your determination that the proposed Newtok to Mertarvik relocation is expected to have no effect on listed species, no further consultation is needed with the USFWS pursuant to the Endangered Species Act. However, I am happy to discuss the project further if you would like. My direct line is listed in my signature block below.

Regards,

Doug Cooper

On Tue, Jul 5, 2016 at 10:46 AM, Walter Jim <WJim@avcphousing.org> wrote:

Doug,

Any new positive leads or concurrence for the proposed new Village site of Mertarvik?

Thank You,

Walter Jim
Planner, AVCP RHA

O. Box 767
Bethel, Alaska 99559
Douglass M. Cooper
Branch Chief - Ecological Services
Anchorage Fish and Wildlife Field Office, USFWS
4700 BLM Road
Anchorage, Alaska 99507

(907) 271-1467
douglass_cooper@fws.gov

**
June 7, 2016

Doug Cooper
Fish and Wildlife Field Office
4700 BLM Road
Anchorage, Alaska 99507

Re: Construction of 2 Single Family Units; Relocation of 12 Single Family Units; and Future Development at Mertarvik, Alaska.

Dear Mr. Cooper,

The Association of Village Council Presidents Regional Housing Authority (AVCP RHA) is the Tribally Designated Housing Entity (TDHE) for the Newtok Village Council to plan and implement an Indian Housing Plan with funding from the Native American Housing Assistance and Self-Determination Act (NAHASDA).

AVCP RHA is working to establish the Environmental Review Record (ERR) for the relocation project. The project includes construction of 2 single family units and relocation of 12 single family unit from Newtok to Mertarvik. Mertarvik site was selected by the village to move the current village to escape the serious threat of erosion facing the village of Newtok. A current map of the proposed new village is enclosed for your review.

The project plans is for a development and construction of a village center; lots for house, fuel tank farm, power plant, multi-purpose building, water plant for a laundry facility and water well, community hall, church, public safety building, community gym, clinic, post office, library, store, school and teacher housing. Plans include a 2.5 mile road in the proposed site and a 3 mile road to the quarry. The site has plans for 25 lots for houses. Each lot is about .75 acre in size. At the site the project(s) will proceed taking all practicable measures to minimize harm.

The community has been working, with numerous federal and state agencies, for the last 20 to 30 years to relocate to another site. The community has no other land available to relocate the community. The land has been eroding to the point that it is now dangerously close to the existing house structures. The community got U.S. congressional support to swap land between the federal government and the village corporation so the village can relocate to higher and dryer ground and is not facing erosion. That land is now called Mertarvik. The new village site is located on elevation higher than the river at Nelson Island. The Newtok Village Council reviewed the listed species believed to or known to occur in Alaska from the USFWS ECOS web site and determines the project has no effect on the listed 12 species. The form is attached/

The Newtok Village Council is requesting concurrence with this determination from the U.S. Fish and Wildlife Service.
If you have any questions contact me at (907) 543-1323.

Sincerely,

Walter Jim
Development Planner
Find Endangered Species

QUICK SEARCHES

- Threatened/endangered "Box Score"
- Threatened/endangered animals in the U.S. and Foreign Species
- ESA petitions under review
- Species proposed for listing
- Species that are candidates for listing
- Species proposed for a status change or delisting

More species searches...

Get to Know Your Species

Interactive Website
View our new interactive map to learn about endangered species success in your state or territory.
Launch Map »

News

Service Creates ESA Listing Workplan to Provide Predictability and Encourage Proactive Conservation of Imperiled Wildlife
As part of its ongoing efforts to improve the effectiveness and implementation of the Endangered Species Act (ESA) and provide the best possible conservation for our nation's imperiled wildlife, the U.S. Fish and Wildlife Service released today its National Listing Workplan for addressing ESA listing and critical habitat decisions over the next seven years.
News Release »

Featured Species

Channel Island Fox
Four of the six subspecies of island fox on California's Channel Islands - the San Miguel, Santa Barbara, Santa Rosa, and Santa Catalina island foxes - were listed as endangered in 2004 following catastrophic population declines...
More »

Partnership Stories

Rare Animals, Sierra Nevada Bighorn Sheep - Yosemite Nature
Sierra Nevada bighorn sheep are the rarest mountain sheep in North America. After the population dropped to around 100 animals in 1996, this unique subspecies was listed as an endangered species. In the spring of 2015, these charismatic animals were released into the heart of Yosemite for the first time in over 100 years.
Learn More »
Newsletter Sign up

Receive up-to-date announcements regarding endangered species

Email Address

Sign up for our newsletter!

updated: September 6, 2016

https://www.fws.gov/endangered/
Hi Walter. Per our phone conversation, I reviewed your letter and saw your conclusion that constructing 2 homes and relocating 12 homes from Newtok to Mertarvik will have no effect on species under the National Marine Fisheries Service's jurisdiction that are listed under the Endangered Species Act. In cases where a federal action agency such as the Corps of Engineers determines no effect to listed species, no concurrence from our agency is required. However, I certainly don't foresee any effects to listed species from your project. Good luck!

Jon Kurland
Assistant Regional Administrator for Protected Resources
NOAA Fisheries, Alaska Region
July 22, 2016

National Marine Fisheries Service
Protected Resources Division and Habitat Conservation Division
222 West 7th Ave., Box 43
Anchorage, Alaska 99513

Re: Construction of 2 Single Family Units; Relocation of 12 Single Family Units; and Future Development at Mertarvik, Alaska.

To whom it may concern,

The Association of Village Council Presidents Regional Housing Authority (AVCP RHA) is the Tribally Designated Housing Entity (TDHE) for the Newtok Village Council to plan and implement an Indian Housing Plan with funding from the Native American Housing Assistance and Self-Determination Act (NAHASDA).

AVCP RHA is working to establish the Environmental Review Record (ERR) for the relocation project. The project includes construction of 2 single family units and relocation of 12 single family unit from Newtok to Mertarvik. Mertravik site was selected by the village to move the current village to escape the serious threat of erosion facing the village of Newtok. A current map of the proposed new village is enclosed for your review.

The project plans is for a development and construction of a village center; lots for house, fuel tank farm, power plant, multi-purpose building, water plant for a laundry facility and water well, community hall, church, public safety building, community gym, clinic, post office, library, store, school and teacher housing. Plans include a 2.5 mile road in the proposed site and a 3 mile road to the quarry. The site has plans for 25 lots for houses. Each lot is about .75 acre in size. At the site the project(s) will proceed taking all practicable measures to minimize harm.

The community has been working, with numerous federal and state agencies, for the last 20 to 30 years to relocate to another site. The community has no other land available to relocate the community. The land has been eroding to the point that it is now dangerously close to the existing house structures. The community got U.S. congressional support to swap land between the federal government and the village corporation so the village can relocate to higher and dryer ground and is not facing erosion. That land is now called Mertravik. The new village site is located on elevation higher than the river at Nelson Island. The Newtok Village Council reviewed the listed species believed to or known to occur in Alaska from the USFWS ECOS web site and determines the project has no effect on the listed 12 species. The form is attached.

The Newtok Village Council is requesting concurrence with this determination from the National Marine Fisheries Service.
If you have any questions contact me at (907) 543-1323.

Sincerely,

Walter Jim
Development Planner
AVCP Regional Housing Authority
P.O. Box 767
Bethel, Alaska 99559
NOTES

1. HOUSE LOT SIZES ARE APPROXIMATELY 6.75 ACRES

LEGEND

- VILLAGE CENTER
- PHASE 1 HOUSING (22)
- PHASE 2 HOUSING (42)
- PHASE 3 HOUSING (64)
- SCHOOL PROPERTY
- EXISTING BUILDINGS
- EXISTING ELMABAG STREET ROAD
- PROPOSED ROADS (PHASE 1)

PROPOSED AVCD Title VI Home Location
Protected Resources

The Protected Resources Division (PRD) is responsible for implementing marine mammal conservation and recovery programs under the Marine Mammal Protection Act (MMPA) and the Endangered Species Act (ESA) in close coordination with the State of Alaska and other partners.

PRD develops and implements conservation programs for marine mammals including whales, ice seals, harbor seals, northern fur seals, and Steller sea lions; develops and implements recovery programs for threatened and endangered species including Cook Inlet beluga whales, bowhead whales, North Pacific right whales, western Steller sea lions, and Arctic ringed seals; coordinates the Alaska Marine Mammal Stranding Network to respond to stranded or entangled marine mammals; consults with federal agencies to minimize the effects of proposed actions on threatened and endangered marine mammals and their critical habitat, such as oil and gas development and coastal construction projects; develops and implements co-management agreements with Alaska Native organizations to cooperatively manage subsistence use of marine mammals; works collaboratively with stakeholders to implement guidelines and practices for marine mammal viewing to avoid harassment; conducts reviews to determine if species warrant protection under the ESA or if ESA-listed species no longer need such protection; and analyzes interactions between marine mammals and commercial fisheries to minimize adverse effects.

Species Managed

- Steller Sea Lions
- Whales
- Seals
- Porpoises/Dolphins

Additional Species Information

- Seabird Bycatch
- Pinto Abalone
- Corals
- Herring
- Whales, Sea Oysters, Polar Bears (USFWS)
- Maps

Human Interactions

- Entanglement and Injury
- Permits and Authorizations
- Viewing Marine Mammals
- Buying Marine Mammal Parts and Products
- Marine Mammal and Fisheries Interactions
- Marine Mammal Harassment
- Stranding
- Seabird Bycatch
- Co-management
- Section 7 Consultations and Biological Opinions
- Marine Mammal Observer Program
- Arctic Oil and Gas

Contact Information

- Staff phone numbers and emails

Laws and Regulations

- Laws, Acts and Marine Mammal Protections
- Federal Register Rules/Notices

How Do I?

- View marine mammals from a safe distance?
- Report injured or entangled marine mammals?
- Report marine mammal harassment?
- Purchase or collect marine mammal parts legally?
- Get a MMAP Authorization Certificate or a Research Permit?

https://alaskafisheries.noaa.gov/pr
Concepcion, Andy

To: Concepcion, Andy; Walter Jim; Abraham Palacios; Mark Charlie
Subject: Coordination on projects within Wildlife Refuge info...FW: [EXTERNAL] Re: Mertarvik (UNCLASSIFIED)

CLASSIFICATION: UNCLASSIFIED

Mary Romero
Project Manager
907.753.2773
USACE Alaska District Regulatory Division CEPOA-RD-NN, North Section/North Branch PO Box 6898
JBER, Alaska 99506
* We want your feedback! Take the survey: http://corpsmapu.usace.army.mil/cm_apex/f?p=136:4:0

-----Original Message-----
From: Stahlnecker, Kenneth [mailto:kenneth_stahlnecker@fws.gov]
Sent: Friday, July 22, 2016 11:07 AM
To: Romero, Mary R POA <Mary.R.Romero@usace.army.mil>
Cc: Spencer Rearden <spencer_rearden@fws.gov>
Subject: Re: [EXTERNAL] Re: Mertarvik (UNCLASSIFIED)

Hi Mary,

We were able to look into this matter, as we indicated on our phone call, and we confirmed that Yukon Delta National Wildlife Refuge does not have any further permitting requirements for this project.

Thanks for your help.

Ken

Ken Stahlnecker
Refuge Manager
Yukon Delta NWR
PO Box 346
Bethel, Alaska 99559
907-543-1002 - Office
907-545-2434 - Cell
907-543-4413 - Fax

Wed, Jul 20, 2016 at 8:58 AM, Romero, Mary R POA <Mary.R.Romero@usace.army.mil> wrote:
Hi Spencer,

I did receive this BLM conveyance paperwork from HUD. Does this have any relevance in the matter? I am not familiar with these types of documents but maybe it has been conveyed and it is no longer an NWR coordination issue?

Thanks,
Mary Romero
Project Manager
907.753.2773
USACE Alaska District Regulatory Division
CEPOA-RD-NN, North Section/North Branch
PO Box 6898
JBER, Alaska 99506

* We want your feedback! Take the survey: Blocked http://corpsmapu.usace.army.mil/cm_apex/?p=136:4:0

-----Original Message-----
From: Rearden, Spencer [mailto:spencer_rearden@fws.gov]
Sent: Wednesday, July 20, 2016 8:23 AM
To: Cooper, Douglass <douglass_cooper@fws.gov>
Cc: Romero, Mary R POA <Mary.R.Romero@usace.army.mil>; Concepcion, Andy <andy.concepcion@hud.gov>; Abraham Palacios <Abraham_Palacios@avcphousing.org>; Mark Charlie <mark@avcphousing.org>; Zachares, Bill <bill.zachares@hud.gov>; Vernon Born <vernon_born@fws.gov>; Kenneth Stahlnecker <kenneth_stahlnecker@fws.gov>

Subject: [EXTERNAL] Re: Mertarvik (UNCLASSIFIED)

I do not believe that there has been any discussions over this project at Yukon Delta NWR. As far as I know, we are unaware of any planned activities near Newtok.

On Tue, Jul 19, 2016 at 3:59 PM, Cooper, Douglass <douglass_cooper@fws.gov> wrote:

Hi All,

It does sound like there is some confusion over which Federal agency is responsible for what. My email to Walter Jim was in response to his (and ultimately HUD’s) determination that the project would have "No Effect" on any federally threatened or endangered species. In cases where a Federal agency makes a "No Effect" determination, there is no further action taken under the Endangered Species Act (ESA). The Federal agency that has made that determination is taking full responsibility for the project under the ESA, and the US Fish and Wildlife Service has no further involvement under that law. However, this does not address other Federal laws and regulations, such as the Migratory Bird Treaty Act or the Marine Mammal Protection Act. I also does not address any coordination and/or approval needed for activities on other Federal property, such as National Wildlife Refuge (NWR) Lands. Typically, a NWR issues a Special Use Permit (SUP) when activities are to occur on their lands. I assume there has been coordination with our Refuge folks with the Yukon-Delta NWR? I have copied one of the NWR biologists on this email to see if he has any knowledge of such coordination.
About the Refuge

Alaska's two largest rivers, the Yukon and the Kuskokwim, flow across the refuge and are the primary architects of the refuge's landscape.

FEATURES

Youth in the Great Outdoors

Are you interested in pursuing a career in the outdoors? Visit YouthGo.gov to find out more information on how to get involved.

YouthGo.gov (https://youthgo.gov/)

Words of Wisdom

"The joy of living is his who has the heart to demand it" - Theodore Roosevelt

CONSERVATION NEWS

The Steller's Eider Reintroduction Program is proposing to release captive-raised individuals of this beautiful masked seabird to the Yukon-Kuskokwim Delta.

Report Banded Birds (http://www.pwrc.usgs.gov/bbl/)

Have you seen a bird with bling? Biologists use reports of band observations to study many aspects of bird ecology including survival and dispersal. You can help by reporting sightings of banded or marked birds.
The National Wildlife Refuge System, within the U.S. Fish and Wildlife Service, manages a national network of lands and waters set aside to conserve America's fish, wildlife, and plants.

REFUGE UPDATES

Kuskokwim River Daily Update
(/refuge/yukon_delta/wildlife_and_habitat/dailyupdate.html)
This update provides current information regarding this years salmon run, fishing regulations, and message from our law enforcement.

Final Regulatory Changes (https://www.fws.gov/alaska/nur/ak_nur_pr.htm)
The Service Publishes a Final Rule on the Non-Subsistence Take of Wildlife for Alaska National Wildlife Refuge Regulations. The rule was developed in response to public interest and concern about predator control and recent liberalization of predator harvest within the State of Alaska. The final rule will become effective on September 6, 2016.

Spectacled Eider
(http://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=Bo8Z)
This threatened species that spends its entire life within the bounds of the Bering Sea is one of the most unique species of waterfowl nesting on the Yukon-Kuskokwim Delta.

Learn more (http://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=Bo8Z)
WILD AND SCENIC RIVERS
Memorandum to File

Wild and Scenic Rivers Act of 1968

Environmental Record Determination

Proposed project is not located within proximity to a listed river and will have no effect.

Source Documentation

- Nationwide Rivers Inventory for Alaska Wild and Scenic River systems.
Alaska has approximately 365,000 miles of river, of which 3,210 miles are designated as wild & scenic—less than 1% of the state's river miles.

Alagnak River
Alatna River
Andreafsky River
Anlakchak River
Beaver Creek
Birch Creek
Charley River
Chilikadrotna River
Delta River
Fortymile River
Gulkana River
Ivishak River
John River
Kobuk River
Koyukuk River (North Fork)
Mulchatna River
Noatak River
Nowitna River
Salmon River
Selawik River
Sheenjek River
Tinayguk River
Tilikikia River
Unalakleet River
Wind River
<table>
<thead>
<tr>
<th>Designated Rivers</th>
<th>National System</th>
<th>River Management</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>About WSR Act</td>
<td>WSR Table</td>
<td>Council</td>
<td>Q & A Search</td>
</tr>
<tr>
<td>State Listings</td>
<td>Study Rivers</td>
<td>Agencies</td>
<td>Bibliography</td>
</tr>
<tr>
<td>Profile Pages</td>
<td>Stewardship</td>
<td>Management Plans</td>
<td>Publications</td>
</tr>
<tr>
<td></td>
<td>WSR Act Legislation</td>
<td>GIS Mapping</td>
<td>GIS Mapping</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Logo & Sign Standards</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Display</td>
</tr>
</tbody>
</table>
FARMLAND PROTECTION
Memorandum to File

Farmland Protection Policy Act

Environmental Record Determination

- No unique farmlands have been designated in Alaska
- No farmlands of statewide importance have been designated in Alaska

Source Documentation

- USDA National Resources Conservation Service Alaska Prime and Important Farmlands website.
Prime and Important Farmlands

Prime and Important Farmlands includes all land that is defined as prime, unique, and farmlands of statewide or local importance. Alaska's Soil of Local Importance Fact Sheet

Prime Farmland

Prime farmland is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops, and is also available for these uses (the land could be cropland, pastureland, rangeland, forest land, or other land, but not urban built-up land or water). The soils are of the highest quality and can economically produce sustained high yields of crops when treated and managed according to acceptable farming methods.

Very specific technical criteria were established by Congress to identify prime farmland soils. In general, the criteria reflect adequate natural moisture content; specific soil temperature range; pH between 4.5 and 8.4 in the rooting zone; low susceptibility to flooding; low risk to wind and water erosion; minimum permeability rates; and low rock fragment content.

There are no prime farmlands in Alaska since our soil temperatures do not meet the threshold established by Congress.

Unique Farmland

Unique Farmland is land other than prime farmland that has a special combination of unique characteristics needed to economically produce sustained high yields of a specific crop. Specific examples are bog soils used for cranberry production in the Northeast, and manipulated lava fields used for macadamia nut production in Hawaii.

No unique farmlands have been designated in Alaska.

Farmland of Statewide Importance

This is land, in addition to prime and unique farmland, that is of statewide importance for the production of food, feed, fiber, forage, and oilseed crops. Criteria for defining and delineating this land are to be determined by the appropriate state agency or agencies. Generally, additional farmlands of statewide importance include those that are nearly prime farmland and that economically produce high yields of crops when treated and managed according to acceptable farming methods. Some may produce as high a yield as prime farmlands if conditions are favorable. In some states, additional farmlands of statewide importance may include tracts of land that have been designated for agriculture by state law.

No farmlands of statewide importance have been designated in Alaska.

Farmland/Soil of Local Importance

In some local areas, there is concern for certain additional farmlands for the production of food, feed, forage, fiber, and oilseed crops, even though these lands are not identified as having national or statewide importance. Where appropriate, these lands are to be identified by the local agency or agencies concerned. In places, additional farmlands of local importance may include tracts of land that have been designated for agriculture by local ordinance.

The Fairbanks Soil and Water Conservation District (SWCD), the Matanuska-Susitna Borough and the Kenai and Homer Soil and Water Conservation Districts have adopted criteria for Farmlands/Soils of Local Importance for lands within their jurisdictional boundaries. Criteria encompasses all soils in Land Capability Classes 2 and 3, and those soils in Land Capability Class and Subclass 4c.

Soils of Local Importance (within the Matanuska-Susitna Borough and the Matanuska-Susitna Valley Area Soil Survey)

Soils of Local Importance (within the Matanuska-Susitna Borough and the Yentna Area Soil Survey)

Soils of Local Importance (within the Fairbanks SWCD and the Greater Fairbanks, Greater Nenana,
CLEAN AIR ACT
Memorandum to File

Clean Air Act

Environmental Record Determination

Metarvik in not located in a non attainment area

Source Documentation

- Current Nonattainment Counties for All Criteria Pollutants
Current Nonattainment Counties for All Criteria Pollutants

Green Book Nonattainment Areas

As of June 17, 2016

The 8-hour Ozone (1997) standard was revoked on April 6, 2015 and the 1-hour Ozone (1979) standard was revoked on June 15, 2005.

View Notes

Listed by State, County, NAAQS * Part County NA NAA Area Name (Classification, if applicable)

<table>
<thead>
<tr>
<th>State</th>
<th>County</th>
<th>NAAQS</th>
<th>Part County</th>
<th>Area Name (Classification, if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALABAMA</td>
<td>Pike Co</td>
<td>Lead (2008)</td>
<td>* Troy, AL</td>
<td></td>
</tr>
<tr>
<td>ALASKA</td>
<td>Fairbanks North Star Borough</td>
<td>PM-2.5 (2006)</td>
<td>* Fairbanks, AK - (Moderate)</td>
<td></td>
</tr>
<tr>
<td>ARIZONA</td>
<td>Cochise Co</td>
<td>PM-10 (1987)</td>
<td>* Paul Spur/Douglas (Cochise County), AZ - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gila Co</td>
<td>Lead (2008)</td>
<td>* Hayden, AZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM-10 (1987)</td>
<td>* Hayden, AZ - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM-10 (1987)</td>
<td>* Miami, AZ - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfur Dioxide (2010)</td>
<td>* Hayden, AZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfur Dioxide (2010)</td>
<td>* Miami, AZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maricopa Co</td>
<td>PM-10 (1987)</td>
<td>* Phoenix, AZ - (Serious)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-Hr Ozone (2008)</td>
<td>* Phoenix-Mesa, AZ - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pima Co</td>
<td>PM-10 (1987)</td>
<td>* Ajo (Pima County), AZ - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM-10 (1987)</td>
<td>* Rillito, AZ - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinal Co</td>
<td>Lead (2008)</td>
<td>* Hayden, AZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM-10 (1987)</td>
<td>* Hayden, AZ - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM-10 (1987)</td>
<td>* Phoenix, AZ - (Serious)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM-10 (1987)</td>
<td>* West Pinal, AZ - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM-2.5 (2006)</td>
<td>* West Central Pinal, AZ - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfur Dioxide (1971)</td>
<td>* Hayden (Pinal County), AZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfur Dioxide (2010)</td>
<td>* Hayden, AZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-Hr Ozone (2008)</td>
<td>* Phoenix-Mesa, AZ - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Santa Cruz Co</td>
<td>PM-10 (1987)</td>
<td>* Nogales, AZ - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM-2.5 (2006)</td>
<td>* Nogales, AZ - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yuma Co</td>
<td>PM-10 (1987)</td>
<td>* Yuma, AZ - (Moderate)</td>
<td></td>
</tr>
<tr>
<td>CALIFORNIA</td>
<td>Alameda Co</td>
<td>PM-2.5 (2006)</td>
<td>San Francisco Bay Area, CA - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-Hr Ozone (2008)</td>
<td>San Francisco Bay Area, CA - (Marginal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butte Co</td>
<td>PM-2.5 (2006)</td>
<td>Chico, CA - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-Hr Ozone (2008)</td>
<td>Chico (Butte County), CA - (Marginal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calaveras Co</td>
<td>8-Hr Ozone (2008)</td>
<td>Calaveras County, CA - (Marginal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contra Costa Co</td>
<td>PM-2.5 (2006)</td>
<td>San Francisco Bay Area, CA - (Moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-Hr Ozone (2008)</td>
<td>San Francisco Bay Area, CA - (Marginal)</td>
<td></td>
</tr>
</tbody>
</table>

http://www3.epa.gov/airquality/greenbook/ancl.html

7/29/2016
ENVIRONMENTAL JUSTICE
Memorandum to File

Environmental Justice

Environmental Record Determination

Project is not likely to raise environmental justice issues. Proposed housing development sites are being developed so that they will not be located in areas that have a new, continued or historically disproportionate potential for high and adverse effects on minority or low-income populations; and that do not suffer from disproportionate adverse health and environmental effects relative to the community at large.

Source Documentation

- Environmental Protection Agency Environmental Justice Program
Environmental Justice

Environmental Justice Blog and ListServ

Check out the Environmental Justice Blog for stories about advancing EJ across the country. Also, subscribe to the EJ ListServ for up-to-date information about upcoming meetings, funding opportunities, events, and other EJ topics.

Environmental justice is the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income, with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies.

EPA has this goal for all communities and persons across this nation. It will be achieved when everyone enjoys:

- the same degree of protection from environmental and health hazards, and
- equal access to the decision-making process to have a healthy environment in which to live, learn, and work.

EJSCREEN

Check out EPA's environmental justice screening and mapping tool today!

Enter a location:

e.g.: city, state, zip

Search

Learn about the National Environmental Justice Advisory Council (NEJAC).

Read about EPA's EJ 2020 Action Agenda, EPA's strategic plan for advancing environmental justice.

Learn about Environmental Justice in Your Community.

Find grants and resources, including technical assistance programs, training, and more.

Learn More About

Environmental Justice
Community Voices on Environmental Justice
Federal Interagency Working Group
Environmental Justice for Tribes and Indigenous Peoples
Equitable Development and Environmental Justice
Environmental Justice and National Environmental Policy Act

https://www.epa.gov/environmentaljustice
Environmental Justice and Title VI of the Civil Rights Act of 1964

EPA’s Role in International Human Rights, Rights of Indigenous Peoples, and Environmental Justice

Report a Violation

Report possible violations of environmental laws and regulations.

Last updated on August 19, 2016
SOLE SOURCE AQUIFERS
Memorandum to File

Sole Source Aquifers

Environmental Record Determination

There are no EPA designated Sole Source Aquifers located in Alaska.

Source Documentation

- US Environmental Protection Agency Sole Source Aquifer Program
Sole Source Aquifer Program

As of December, 1997, EPA has designated 69 sole source aquifers nationwide. Fifteen of these are in Region 10 (which consists of Alaska, Idaho, Oregon, and Washington). There are currently NO sole source aquifers designated in Alaska.

Recent Progress:
EPA Region 10 signed a new Memorandum of Understanding (MOU) with Federal Highway Administration (FHWA) Washington Division and the Washington State Department of Transportation (WSDOT) on Sept 25, 2014. The MOU expands the list of types of projects which do not have the potential to contaminate a SSA and therefore do not require EPA review. The MOU also includes additional information about the suite of regulations and policies that govern WSDOT and FHWA’s protection of water quality.

On this page:
- Designated Aquifers in the Pacific Northwest
- Background
- Petition for Designation
- Project Review Authority and Coordination
- Public Awareness and Participation
- Resource Characterization
- Limitations of the Program
- Contact Us

Designated Aquifers in the Pacific Northwest

<table>
<thead>
<tr>
<th>Sole Source Aquifer Name</th>
<th>State</th>
<th>FR Vol/No/Pg</th>
<th>FR Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spokane Valley-Rathdrum Prairie Aquifer</td>
<td>WA/ID</td>
<td>43/28/5566</td>
<td>02-09-78</td>
</tr>
<tr>
<td>Camano Island Aquifer</td>
<td>WA</td>
<td>47/66/14779</td>
<td>04-06-82</td>
</tr>
<tr>
<td>Whidbey Island Aquifer</td>
<td>WA</td>
<td>47/66/14779</td>
<td>04-06-82</td>
</tr>
<tr>
<td>Cross Valley Aquifer</td>
<td>WA</td>
<td>52/95/18666</td>
<td>05-16-87</td>
</tr>
<tr>
<td>Newberg Area Aquifer</td>
<td>WA</td>
<td>52/191/37215</td>
<td>10-05-88</td>
</tr>
<tr>
<td>North Florence Dunal Aquifer</td>
<td>WA</td>
<td>52/214/42747</td>
<td>11-05-88</td>
</tr>
<tr>
<td>Cedar Valley Aquifer</td>
<td>WA</td>
<td>53/191/38779</td>
<td>10-03-88</td>
</tr>
<tr>
<td>Lewiston Basin Aquifer</td>
<td>WA/ID</td>
<td>53/191/38782</td>
<td>10-03-88</td>
</tr>
<tr>
<td>Eastern Snake River Plain Aquifer</td>
<td>ID/WY</td>
<td>56/194/50634</td>
<td>10-07-91</td>
</tr>
<tr>
<td>Central Pierce County Aquifer System</td>
<td>WA</td>
<td>59/1/224</td>
<td>01-03-94</td>
</tr>
<tr>
<td>Narrowside Island Aquifer System</td>
<td>WA</td>
<td>59/105/28752</td>
<td>06-02-94</td>
</tr>
<tr>
<td>Vashon-Maury Island Aquifer System</td>
<td>WA</td>
<td>59/127/34468</td>
<td>07-05-94</td>
</tr>
<tr>
<td>Guemes Island Aquifer System</td>
<td>WA</td>
<td>62/230/63545</td>
<td>12-01-97</td>
</tr>
<tr>
<td>Trouble Aquifer System</td>
<td>WA</td>
<td>E6-14710</td>
<td>10-05-06</td>
</tr>
<tr>
<td>Bainbridge Island Aquifer System</td>
<td>WA</td>
<td>78/07409/19282</td>
<td>03-29-13</td>
</tr>
</tbody>
</table>

Note: Designation of the Eastern Columbia Plateau Aquifer System has been suspended indefinitely.

Background

The Sole Source Aquifer (SSA) Protection Program is authorized by Section 1424(e) of the Safe Drinking Water Act of 1974 (Public Law 93-523, 42 U.S.C. 300 et. seq), which states:

"If the Administrator determines, on his own initiative or upon petition, that an area has an aquifer which is the sole or principal drinking water source for the area and which, if contaminated, would create a significant hazard to public health, he shall publish notice of that determination in the Federal Register. After the publication of any such notice, no commitment for federal financial assistance (through a grant, contract, loan guarantee, or otherwise) may be entered into for any project which the Administrator determines may contaminate such aquifer through a recharge zone so as to create a significant hazard to public health, but a commitment for federal assistance may, if authorized under another provision of law, be entered into to plan or design the project to assure that it will not so contaminate the aquifer."

The Environmental Protection Agency (EPA) defines a sole or principal source aquifer as one which supplies at least 50 percent of the drinking water consumed in the area overlying the aquifer. EPA guidelines also stipulate that these areas can have no alternative drinking water source(s) which could physically, legally, and economically supply all those who depend upon the aquifer for drinking water. For convenience, all designated sole or principal source aquifers are usually referred to simply as "sole source aquifers."

Petition for Designation

Although the agency has statutory authority to initiate SSA designations, EPA has a longstanding policy of only responding to petitions. Any person may apply for SSA designation. A "person" is any individual, corporation, company, association, partnership, state, municipality, or federal agency. A petitioner is responsible for providing EPA with hydrogeologic drinking water usage data, and other technical and administrative information required for assessing designation criteria.

In 1987, EPA published the Sole Source Aquifer Designation Petitioner Guidance to assist those interested in preparing and submitting petitions to EPA regional offices. The document provides procedures and criteria for proposing aquifer boundaries, determining whether an aquifer is the sole or
Sole Source Aquifer Program

If your project meets these criteria please submit a completed Region SSA.

To have a project reviewed by us ensure your project meets two conditions being imposed. Occasionally, site or project-specific concerns for ground water quality protection lead to specific recommendations or additional pollution prevention requirements as a condition of funding. In rare cases, federal funding has been denied when the applicant has been either unwilling or unable to modify the project.

Most projects referred to EPA for review meet all federal, state, and local ground water protection standards and are approved without any additional conditions being imposed. Occasionally, site or project-specific concerns for ground water quality protection lead to specific recommendations or additional pollution prevention requirements as a condition of funding. In rare cases, federal funding has been denied when the applicant has been either unwilling or unable to modify the project.

In general, the designation decision process takes a minimum of six months from the time that the petitioner submits a complete petition to EPA. The process may take considerably longer, depending on the technical complexity of the petition, and on the number of petitions that may be undergoing review within the EPA regional office at a particular time.

Project Review Authority and Coordination

If an SSA designation is approved, proposed federal financially-assisted projects which have the potential to contaminate the aquifer are subject to EPA review. Proposed projects that are funded entirely by state, local, or private concerns are not subject to EPA review. Examples of federally funded projects which have been reviewed by EPA under the SSA protection program include:

- highway improvements and new road construction
- public water supply wells and transmission lines
- wastewater treatment facilities
- construction projects that involve disposal of storm water
- agricultural projects that involve management of animal waste
- projects funded through Community Development Block Grants

EPA has developed Memorandums of Understanding (MOU) with federal funding agencies to establish review responsibilities under the SSA protection program and to list categories of projects which should or should not be referred to EPA for review. MOUs help ensure that projects which pose serious threats to ground water quality "so as to create a significant hazard to public health" are referred to EPA. Region 10 has developed MOUs with a number of federal funding agencies including the Federal Highway Administration, the Department of Housing and Urban Development, and the U.S. Department of Agriculture - Rural Development. We are currently updating and renegotiating these MOUs and, as they are signed, they will be made available. We are currently updating and renegotiating these MOUs, all current information can be found on the Groundwater Protection Unit Homepage.

EPA has developed Memorandums of Understanding (MOU) with federal funding agencies to establish review responsibilities under the SSA protection program and to list categories of projects which should or should not be referred to EPA for review. MOUs help ensure that projects which pose serious threats to ground water quality "so as to create a significant hazard to public health" are referred to EPA. Region 10 has developed MOUs with a number of federal funding agencies including the Federal Highway Administration, the Department of Housing and Urban Development, and the U.S. Department of Agriculture - Rural Development. We are currently updating and renegotiating these MOUs and, as they are signed, they will be made available. We are currently updating and renegotiating these MOUs, all current information can be found on the Groundwater Protection Unit Homepage.

Most projects referred to EPA for review meet all federal, state, and local ground water protection standards and are approved without any additional conditions being imposed. Occasionally, site or project-specific concerns for ground water quality protection lead to specific recommendations or additional pollution prevention requirements as a condition of funding. In rare cases, federal funding has been denied when the applicant has been either unwilling or unable to modify the project.

Whenever feasible, EPA coordinates the review of proposed projects with other offices within EPA and with various federal, state, or local agencies that have a responsibility for ground water protection. EPA coordinates the review of proposed projects with other offices within EPA and with various federal, state, or local agencies that have a responsibility for ground water protection. This coordination allows EPA to understand local hydrogeologic conditions and specific project design concerns. Project review coordination also helps ensure that SSA protection measures support or enhance existing ground water protection efforts, rather than duplicate them.

To have a project reviewed by us ensure your project meets two criteria:

1. Be in the review area of the SSA. The review area consists of both the aquifer boundary AND the source area of the SSA as delineated in the GIS maps on this website.
2. The project receives federal funding. The SSA program has no statutory authority to review a project unless it is receiving federal funding.

If your project meets these criteria please submit a completed Region 10 SSA checklist (RTF) (2 pp, 69K) by email to Susan Eastman (Eastman.Susan@epa.gov). Projects submitted without a checklist or via hardcopy may have a delayed review time.

Public Awareness and Participation

SSA designations help increase public awareness on the nature and value of local ground water resources by demonstrating the link between an aquifer and a community's drinking water supply. Often, the realization that an area's drinking water originates from a vulnerable underground supply can lead to an increased willingness to protect it. The public also has an opportunity to participate in the SSA designation process by providing written comments to EPA or by participating in the SSA designation process by providing written comments to EPA or by participating in an EPA-sponsored public hearing prior to a designation decision.

Resource Characterization

Important information on the boundaries, hydrogeologic materials, and water use patterns of an area's aquifer must be documented by a petitioner seeking SSA designation. Following EPA's technical review of a petition, this information is summarized by the Agency in a technical support document that is made available for public review. Following designation, a Federal Register (FR) notice is published to announce and summarize the basis for EPA's designation.

Limitations of the Program

Sole source aquifer designation provides only limited federal protection of ground water resources which serve as drinking water supplies. It is not a comprehensive ground water protection program. Protection of ground water resources can best be achieved through an integrated and coordinated combination of federal, state, and local efforts such as called for under the Comprehensive State Ground Water Protection Program (CSGWPP) approach. For example, local wellhead protection programs designed to protect the recharge areas of public water supply wells should work in concert with contaminant source control and pollution prevention efforts being managed at various levels of government. This coordination ensures that all ground water activities meet the same protection goal without duplication of time, effort, and resources.

Although designated aquifers have been determined to be the "sole or principal" source of drinking water for an area, this does not imply that they are more or less valuable or vulnerable to contamination than other aquifers which have not been designated by EPA. Many valuable and sensitive aquifers have not been designated simply because nobody has petitioned EPA for such status or because they did not qualify for designation due to drinking water consumption patterns over the entire aquifer area. Furthermore, ground water value and vulnerability can vary considerably both between and within designated aquifers. As a result, EPA does not endorse using SSA status as the sole or determining factor in making land use decisions that may impact ground water quality. Rather, site-specific hydrogeological assessments should be considered along with other factors such as project design, construction practices, and long-term management of the site.

Contact Us

For more information on the Sole Source Aquifer Program in Region 10, contact:

Susan Eastman
206-553-6249

COASTAL ZONE MANAGEMENT ACT
Memorandum to File

Coastal Zone Management Act of 1972

Environmental Record Determination

Currently the State of Alaska does not have a Coastal Zone Management Plan.

Source Documentation

- Alaska Dept. of Natural Resources/State Pipeline Coordinators Office
The Alaska Coastal Management Program (ACMP) is scheduled to sunset at 12:01 AM, Alaska Standard Time, on July 1, 2011, per AS 44.66.030. The Legislature adjourned two special legislative sessions without passing legislation required to extend the Alaska Coastal Management Program (ACMP). The ACMP webpage will be viewable for reference purposes through June 30, 2012. It will then be archived within the Department of Natural Resources. Beginning on July 1, 2011, the website will remain static and there will be no further updates to the content of the former ACMP website. If you have any questions, please contact the DNR's Commissioner's Office at 907-269-8400.

More information about agency liaisons is available in the 2013 SPCO Annual Report.
Alaska Coastal Management Program

The federal Coastal Zone Management Act (CZMA) of 1972 created the federal Coastal Zone Management Program (CZMP). The CZMP strives to protect, develop, and restore the natural and cultural resources of coastal areas by balancing competing uses of and impacts to these resources. The Office of Ocean and Coastal Resource Management (OCRM), which is part of National Oceanic Atmospheric Administration (NOAA), implements the CZMP by providing approval, oversight and funding to state programs. One of the primary objectives of the OCRM is to use a comprehensive approach on an ecosystem scale to coastal zone management that works through key partnerships to address the complex management issues facing the U.S. coasts and oceans.

On June 4, 1977 the Alaska Legislature enacted the Alaska Coastal Management Act (ACMA), which established the Alaska Coastal Management Program (ACMP). The ACMP is composed of 33 coastal resource districts which develop and implement their own programs and enforceable policies for the roughly 44,500 miles of Alaska coastline, which has national and international significance for its healthy and diverse ecosystems. The intent of the ACMP is to provide stewardship for Alaska’s rich and diverse coastal resources to ensure a healthy and vibrant coast that efficiently sustains long-term economic and environmental productivity. It was also intended to provide a forum for local community involvement in the preservation and development of our coastal areas through the participation of the district programs.

Project proposals that trigger a review under the ACMP must be consistent with both the statewide standards of the ACMP, as set forth in 11 AAC 110, 112 and 114, and the enforceable policies of the coastal district where the project will occur. This requirement gives the state and coastal districts a powerful tool to: ensure conservation and protection of the habitats and wildlife populations of Alaska’s coastal environments; influence federal decision making; and affect the design and approval of projects and lands in the coastal zone. However, the power of this tool is dependent on the quality of our State standards and the ability of the districts to implement effective programs and enforceable policies.

On March 12, 2003, at the request of Governor Frank Murkowski, the Alaska State Legislature mandated the reform of the ACMP that included revising statutes, regulations, district coastal management plans, and other ACMP processes. The Murkowski-era language of the state standards, particularly the Habitat Standards found in 11 AAC 112.300, "revised" the standards to such an extent that no conservation or protection of wildlife habitats can occur, minimized local participation by marginalizing district programs, and eliminated the districts' ability to draft enforceable policies and standards. This ultimately has resulted in the institutional and policy failure of the ACMP.

Periodically, the OCRM reviews state's coastal management programs, and in June of 2008, OCRM published it's findings regarding Alaska's Coastal Management Program.

Click here to download OCRM's Evaluation and Findings of Alaska's Coastal Management Program.

On July 1st, 2008, the Alaska Department of Natural Resources (DNR) initiated a "re-evaluation" of the ACMP laws. The DNR will prepare a statutory proposal for consideration during the 2009 Alaska Legislative Session and a subsequent regulatory package for implementing the changes. All Alaskans including conservationists, natives and other stakeholders have a chance to re-enter a partnership to address the complex management issues facing Alaska's coastal zones.

Click here to download the initial proposed changes to the ACMP Habitat Regulations.

The Northern Alaska Environmental Center got involved in the re-evaluation process to ensure that our values of ecosystem and cultural preservation were protected, and to push for meaningful local involvement by coastal communities.

Click here to download NAEC's August 15, 2008 comments.
It is unclear what is happening with this revision process at the present time. As of September 2009, it appears that DNR is continuing to move forward with revisions to 11 AAC 110 (the administration and implementation regulations) but is not actively working to revise 11 AAC 112, which includes resource and habitat standards. NAEC continues to look for ways to push for reform of these regulations.
PART B: ENVIRONMENTAL PROGRAM FACTORS
Environmental Assessment Checklist

[Environmental Review Guide HUD CPD 782, 24 CFR 58.40; Ref. 40 CFR 1508.8 & 1508.27]

Evaluate the significance of the effects of the proposal on the character, features and resources of the project area. Enter relevant base data and verifiable source documentation to support the finding. Then enter the appropriate impact code from the following list to make a determination of impact. Impact Codes: (1) - No impact anticipated; (2) - Potentially beneficial; (3) - Potentially adverse; (4) - Requires mitigation; (5) - Requires project modification. Note names, dates of contact, telephone numbers and page references. Attach additional material as appropriate. Note conditions or mitigation measures required.

<table>
<thead>
<tr>
<th>Code</th>
<th>Source or Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Development</td>
<td></td>
</tr>
<tr>
<td>Conformance with Comprehensive Plans and Zoning</td>
<td>1 Although a comprehensive plan has not been developed for the Mertanvik site, a Community Layout Plan was developed and approved by the Newtok Planning Council and is considered the guiding document for development (attached). No current zoning applies to this project. It has not been determined if this project will result in zoning regulations.</td>
</tr>
<tr>
<td>Compatibility and Urban Impact</td>
<td>1 The proposed one-story, single-family units are compatible with the proposed village layout and are typical of village housing units. The project is not sited within an urban environment and will not result in an urban environment.</td>
</tr>
<tr>
<td>Slope</td>
<td>1 The project is located on a fairly flat slope, with the site map showing a relatively consistent upgradient trend to the south at an approximately 5% slope. There is no history of slope failure in the project area or physical evidence of slides or slumps in the project area. The project will contain gravel road that will mitigate stormwater flows by allowing sheet flow to percolate to the subsurface. Drainage culverts would be installed as needed to maintain natural drainage patterns. Houses and other structures will be built above the ground surface, either on 'stilts' or piling. No drainage improvements or stormwater infrastructure are currently proposed. Source (Site Visit August 2016)</td>
</tr>
<tr>
<td>Erosion</td>
<td>1 The project area does not have any indications of erosion problems. (Cite field visit photos)</td>
</tr>
<tr>
<td>Soil Suitability</td>
<td>1 Surface rock in the vicinity of the project site is vascular basalt. The soil in most areas is basalt weathered to sand and gravel. The surface of the unweathered basalt ranged from 7 to more than 31.5 feet below the ground surface. The ground surface has a layer of organics that varies in depth, but is generally 1 to 2 feet thick. There is discontinuous permafrost on the island. The depth to permafrost in most areas is probably about 18 to 24 inches. The permafrost is ice rich and has moisture content (on the basis of weight) of 20 to 30 percent. There is surface evidence that ice wedges are present in the area, although none was observed. There is bedrock between 6' and 25' throughout the site; a rare resource in western Alaska. Housing foundations will be site-specific. Buildings will either have adjustable foundations (stilts) or be constructed on piling. Typical road construction/arctic engineering practices will be used for construction of roads to insulate against permafrost degradation.</td>
</tr>
<tr>
<td>Hazards and Nuisances including Site Safety</td>
<td>1 Nelson Island is in Seismic zone A, the lowest zone in the state in terms of required design standards.</td>
</tr>
</tbody>
</table>
No natural hazards have been identified at the project site. A hazard mitigation plan for Newtok was updated in 2015 and evaluated hazards at Mertarvik. At 600 feet above sea level, the project site is not subject to flooding or erosion. The project site also shares the following hazard type with Newtok: earthquake, ground failure, severe weather, and tundra fire. The Newtok Village Council supports projects that provide mitigation measures from natural hazards of earthquake, ground failure, severe weather, and tundra fire at the current as well as the new Mertarvik Village site (2015 Newtok HMP).

For safety, residents will likely move back to Newtok during the spring and fall when movement back and forth from Newtok to Mertarvik would be too risky (from 2012 SMP background report) due to freezing and thawing conditions.

Housing will be constructed above ground either on stilts or piling. During the initial phase, cell phone service will be intermittent and slightly unreliable at Mertarvik. In the case of injuries, a Mash Unit (Pioneer Mertarvik Clinic) will be established that will use boats as its primary mode of transportation back to Newtok.

To facilitate emergency landings by planes, a portion of the Quarry Road may serve as an emergency runway.

Energy Consumption

| 1 | The average modern home in Newtok uses 300 gallons of heating fuel every 1-2 weeks. In light of this, housing in Phase I will be 6-star rated homes. Heat will be provided to Phase I residents through wood stoves with individual generators providing electricity. Energy consumption by residents in Phase II has not been established. The first homes will have their own generators that feed into battery banks and are solar/wind ready as well as ready to plug into a conventional grid. Current design is focused on self-contained pioneer units that can tie into an electrical grid when a grid is created. Current plans exceed property and energy-efficiency standards currently established in Alaska. The home is modeled to use approximately 250-300 gallons of heating oil annually. Currently, the average usage in the region is around 800 gallons annually. There are currently three storage containers for heating oil and gasoline (two near the barge landing and another one up near the MEC). A 350kw generator will be used to operate the rock crusher and electricity from it will be provided to residents and other buildings during the initial phase using a 480V line. A #2 diesel tank will be used to store diesel for heavy equipment use and for heating. After the initial phase, a fuel tank farm and power plant will be constructed. |

| 1 | The project construction will produce negligible levels of noise. No noise ordinances currently apply and not anticipated to be developed. |
Air Quality

Effects of Ambient Air Quality on Project and Contribution to Community Pollution Levels

1. According to Alaska Administrative Code (AAC) 18 AAC 50.15, all geographic areas in the state are designated by the federal administrator as “attainment,” “non-attainment,” or “unclassifiable.” There is insufficient information in the project area’s air quality, and the site is designated as unclassifiable.

Although there is a lack of monitoring data in this area, DEC and EPA have identified dust in villages as a potential problem. According to the EPA, road dust consists mainly of coarse particles that become airborne by tire friction that in some cases may be contaminated with man-made and naturally-occurring pollutants. This dust becomes airborne during dry and windy conditions, particularly when the dust is disturbed by four wheelers and other vehicles.

Newtok is not on the list of communities reported by the DEC to be highly affected by dust. Impacts to air quality as a result of the project are anticipated to be temporary and occur during construction. Although no dust abatement measures are required, a water truck is planned for the site to keep dust level minimal.

Environmental Design

Visual Quality – Coherence, Diversity, Compatible Use and Scale

1. The mass and scale of the project is consistent with other village community development projects.

Socioeconomic

Demographic Character Changes

1. No demographic data for the project site exists. The project would not change the demographics of the area. An Elder Housing Model is being developed to accommodate the needs of elderly residents.

Displacement

1. The eventual relocation of all of the residents of Newtok to the new site in Metarvik will result in zero displacement. As additional housing units are constructed, families from Newtok will relocate to Metarvik; activities will be done in accordance with the Uniform Relocation Act to ensure issues are addressed. (AKONAP HUD)

Employment and Income Patterns

1. The school, clinic, village services and commercial fishing provide employment. Subsistence activities and trapping supplement income. In 2009, 17 residents held commercial fishing permits. The project is not anticipated to affect employment or income patterns.

Community Facilities and Services

Educational Facilities

1. An Education Action Plan was developed to make sure sufficient educational opportunities for school-age children prior to school construction. Children will be home-schooled and if needed, a temporary teaching facility could be built.

After the initial phase, a school and teacher housing will be constructed.

Commercial Facilities

1. All goods and services will be obtained in Newtok. After the initial phase, a store will be constructed.

Health Care

1. A MASH unit will provide first aid and limited health care services; Health care will be accessed in Newtok.

After the initial phase, a clinic will be constructed.

Social Services

1. Social services will be accessed in Newtok during the initial phase.

Solid Waste

1. A burn unit will be available to manage solid waste during the initial phase. A ‘mini-dump’ is being proposed.
<table>
<thead>
<tr>
<th>Waste Water</th>
<th>1</th>
<th>The first phase of housing would use the existing septic field that has already been constructed at the MEC Site. As of yet, the interface point between the haul-distribution point and this septic system has not been designed. The draft housing plan will focus on a community-wide waste system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Water</td>
<td>1</td>
<td>No stormwater systems are currently planned; however cross-drainage culverts will be installed as needed to facilitate drainage under roads.</td>
</tr>
<tr>
<td>Water Supply</td>
<td>1</td>
<td>Water is currently available through access to a local spring, a well, or through rainwater catchment. Residents will select their source and then point-source water treatment plants will treat water in homes. After the initial phase, a washeteria/water plant will be constructed</td>
</tr>
<tr>
<td>Public Safety</td>
<td>1</td>
<td>During the initial phase, services will be in Newtok. After the initial phase, a public safety building will be constructed</td>
</tr>
<tr>
<td>- Police</td>
<td>1</td>
<td>Fire services will be handled in Newtok</td>
</tr>
<tr>
<td>- Fire</td>
<td>1</td>
<td>During the initial phase emergency services will be available in Newtok or in a nearby community such as Bethel.</td>
</tr>
<tr>
<td>Emergency Medical</td>
<td>1</td>
<td>Due to the remote location, open space and outdoor recreational facilities are not currently planned.</td>
</tr>
<tr>
<td>Open Space and Recreation</td>
<td>1</td>
<td>No organized recreational opportunities will exist for the initial phase. After the initial phase, a multi-purpose building and/or community gym will be constructed.</td>
</tr>
<tr>
<td>- Open Space</td>
<td>1</td>
<td>No organized recreational opportunities will exist for the initial phase. After the initial phase, a multi-purpose building/or and community gym will be constructed.</td>
</tr>
<tr>
<td>- Recreation</td>
<td>1</td>
<td>The Mertarvik Evacuation Center will serve as a community space and would host a variety of cultural events, such be also be Traditional Eskimo Dance, Community meetings and other activities. After the initial phase, a tribal hall, library, and church will be constructed</td>
</tr>
<tr>
<td>Transportation</td>
<td>1</td>
<td>A Long Range Transportation Plan (LRTP) developed in accordance with 25 C.F.R. Part 170 for the Newtok Traditional Council will guide transportation-related decisions. All transportation off-site is currently by boat. Travel within the project site is by 4-wheeler or by foot. An airport serving future residents is anticipated but has not yet been designed.</td>
</tr>
<tr>
<td>Water Resources</td>
<td>1</td>
<td>Baird Inlet lies approximately ¼ mile to the north and a small drainage with intermittent flow lies east of the access road alignment. No other rivers, creeks or open bodies of water are near the project area. Source: 2008 EA</td>
</tr>
<tr>
<td>Surface Water</td>
<td>The project site is nearly free of surface water. The project lies on high ground with no prominent drainage paths to creeks or ponds. Sources: Site Trip August 2016; Bing Aerial Photos, 2008 EA</td>
<td></td>
</tr>
<tr>
<td>Unique Natural Features and Agricultural Lands</td>
<td>No agricultural lands are present within the project site. No unique natural features are present. Source: 2008 EA</td>
<td></td>
</tr>
<tr>
<td>Vegetation and Wildlife</td>
<td>The site is dominated by wetlands with vegetation typical of western Alaska and the lowlands of the Yukon-Kuskokwim Delta. Upgradient of the project site, the vegetation changes to heath tundra, a complex of vegetative associations that vary according to small differences in exposure, drainage, and disturbance. Heath tundra is characterized by a moss and lichen mat on which other plants grow. Sedges and grasses are abundant. In drier areas, woody plants consisting primarily of prostrate or low-growing shrubs are common. In 2005 the Corps of Engineers refined the delineation of wetland and vegetation types around the project site. Wetland vegetation at the project site is composed mostly of palustrine emergent persistent/scrub-shrub evergreen/moss and palustrine emergent persistent/scrub-shrub broad-leaved deciduous wetland. Vegetation types are mostly mesic shrub-birch ericaceous and tussock tundra interspersed with low, open willow shrub and blue joint herb shrub complex patches. These wetland and vegetation types are typical and widespread throughout higher ground on Nelson Island and are not unique to the project site. A Section 404 permit will be obtained prior to construction to comply with the Clean Water Act. Mitigation may be required, based on project design and will not be determined until a permit is submitted. It is anticipated that the project will be eligible for general permit 2007-541-M1. Small mammals, including voles, shrews, lemmings, short-tailed weasels, and mink, range across much of Nelson Island and could be present throughout the project area. Fish and Wildlife Service biologists noted an abundance of voles and lemmings during an August 2006 field study of the area (USFWS 2006). Reindeer were introduced to Nelson Island in 1934, but there are no reindeer on the island today. There are also no caribou on Nelson Island. Caribou range to north, east, and southeast of Nelson Island, but their range does not extend to the island. The Muchatna herd, which ranges south of the Kuskokwim River, possibly comes closest to Nelson Island. The Yukon-Kuskokwim Delta is rich in bird species diversity, especially during the summer when the delta hosts large numbers of nesting waterfowl. It is one of the most productive areas in the world for geese. Baird Inlet Island, about 5 miles southwest of Newtok and 4 miles north of the project site, is home to a colony of about 4,500 to 10,122 nesting pairs of Pacific black brant. The sea bird colony closest to the project site is on the outer coast of Nelson Island, approximately 40 miles from the site. Source: 2008 EA</td>
<td></td>
</tr>
<tr>
<td>Flood Disaster Protection Act [Flood Insurance] [§58.6(a)]</td>
<td>1</td>
<td>The Federal Emergency Management Agency (FEMA) has not mapped flood hazards for the project site. Although the USACE and State of Alaska Division of Community and Regional Affairs (DCRA) maintain limited flood records and community maps for many areas in Alaska, data related to Mertarvik does not exist pertaining to flood boundaries and hazards. However, due to the distance from the coastline and elevation, the project site is not anticipated to be within a 100-year floodplain Source: FEMA, USACE floodplain websites and DCRA.</td>
</tr>
<tr>
<td>Coastal Barrier Resources Act/ Coastal Barrier Improvement Act [§58.6(c)]</td>
<td>1</td>
<td>A review of the U.S. Fish and Wildlife Service website indicated that there are no lands included in the Coastal Barriers Resources Act system located within Alaska. Source: USFWS</td>
</tr>
<tr>
<td>Airport Runway Clear Zone or Clear Zone Disclosure [§58.6(d)]</td>
<td>1</td>
<td>No runway yet exists at the site. The FAA will evaluate runway clear zones during final planning and design.</td>
</tr>
<tr>
<td>Other Factors</td>
<td>1</td>
<td>The project is unique for two reasons: (1) The construction of houses and public facilities outlined in this project occurs in a community that has been taking shape over the last several years. As a result, the initial population living in Mertarvik will be present prior to final build-out of all facilities. (2) The project is urgent due to the expected loss of more homes each year from flooding/erosion.</td>
</tr>
</tbody>
</table>
NOTES

THIS SYSTEM IS DESIGNED AS A "SOLAR-READY" SYSTEM. THE PHOTOVOLTAIC (PV) ARRAY
FUTURE SOLAR ARRAY MUST INCLUDE PV PANELS, COMBINER
BOX & MPPT CHARGE CONTROLLER
THE INVERTER MOUNTING PANEL IS SOLAR-READY TO ACCEPT
POWER FROM SOLAR PV SYSTEM

POWER GENERATION/DISTRIBUTION SYSTEM

NOT TO SCALE
POWER MODE
When the generator is **RUNNING** it is using **GAS** and charging the **BATTERY**. **ORANGE** and **WHITE** outlets have **POWER**.

- **GAS** ➔ **GENERATOR** ➔ **BATTERY** ➔ **LOW** ➔ **ORANGE OUTLETS**
- **WHITE OUTLETS**
 - ELEC RANGE
 - MICROWAVE
 - COFFEE POT
 - FREEZER
 - PLAYSTATION
 - EXTERIOR+
 - ELATURAQ OUTLETS

QUIET MODE
When the generator is **NOT RUNNING** the **BATTERY** is giving **POWER** to the **ORANGE OUTLETS** only.

- **BATTERY** ➔ **FULL** ➔ **ORANGE OUTLETS**
- **WHITE OUTLETS**
 - HRV LIGHTS
 - SMOKE DETECTOR
 - TV + Small Electronics
 - LAPTOP
 - VHF
 - REFRIGERATOR

NO POWER
- **WHITE OUTLETS**
 - HRV LIGHTS
 - SMOKE DETECTOR
 - TV + Small Electronics
 - LAPTOP
 - VHF
 - REFRIGERATOR
ECO MODE

RENEWABLE sources of energy, like WIND and SOLAR, provide power to charge the BATTERY system giving POWER to the ORANGE outlets only.
Microgrid Mode
The Microgrid collects and distributes power to the houses connected to the grid system.
ARCHAEOLOGICAL EVALUATION OF CULTURAL RESOURCES AROUND MERTARVIK, ALASKA: PROPOSED RELOCATION SITE FOR NEWTOK

Margan Allyn Grover
US Army Corps of Engineers, Alaska District
March 2007
Table of Contents
Introduction ... 1
Introduction ... 1
Project Purpose ... 3
Yukon-Kuskokwim Culture History ... 3
Known Cultural Resources in Project Area .. 7
Methods ... 7
Results ... 8
Cultural Resource Evaluations .. 14
Recommendations ... 14
References cited .. 17

List of Figures
Figure 1. Location and vicinity ... 1
Figure 2. Newtok (2005). .. 2
Figure 3. Mertarvik area with temporary ramp (2006, courtesy Village Safe Water). 2
Figure 4. The lower Yukon-Kuskokwim region .. 6
Figure 5. GPS points from archaeological survey, corresponding features, and archaeological sites .. 8
Figure 6. XBI-00156, fenced graves (Sept 2002). ... 9
Figure 7. Potential gravel source (Sept 2002). Note Takikchak Creek in center right of frame. 10
Figure 8. Possible clay pits at barge landing (XBI-00183, Aug 2005). Red arrows indicate some of the pits ... 11
Figure 9. Detail of a possible clay pit at the barge landing (Aug 2005). 12
Figure 10. The structural remains along the beach at the barge landing (Aug 2005). 12
Introduction

Newtok is a community of approximately 325 residents in the Yukon-Kuskokwim Delta, situated between the Newtok and Ninglick rivers (figure 1). In 1954, the Ninglick River was about 4,000 feet south of the community, but by 2006, the river had moved to within 800 feet of the nearest structures. Over the last 50 years, the erosion problem has been addressed unsuccessfully in many ways. Relocating the community has been proposed as the best solution to the problem. The Newtok Traditional Council (the federally recognized tribe) evaluated six relocation sites through polls of residents in 1996, 2001, and 2003, and the preferred location was Mertarvik on Nelson Island (92% for Mertarvik, 3% for other locations, 5% for other solutions, no votes for relocating to one of the other area communities). Congress approved a land exchange between the Newtok Village Corporation and the U.S. Fish and Wildlife Service in 2003, under the Alaskan Native Village and the Interior Department Land Exchange Act of November 17, 2003 (Public Law 108-129, 117 Stat. 1358). The Department of Interior conveyed 10,943 acres at Mertarvik to the Newtok Village Corporation on April 28, 2004.

Figure 1. Location and vicinity.

The environment around Newtok is similar to many portions of the lower Yukon-Kuskokwim Delta—a moist low lying plain with little elevation change, a great deal of surface water, and many lakes (figure 2). In contrast, Mertarvik gently slopes to the toe of the Kaluyut Mountains on the north shore of Nelson Island. The underlying basaltic bedrock is volcanic in
origin. There is little standing water in the area, although a small creek flows to the west, and a freshwater spring and several seasonal drainages cross the area (figure 3; USFWS 1988).

Figure 2. Newtok (2005).

Figure 3. Mertarvik area with temporary ramp (2006, courtesy Village Safe Water).
Project Purpose

As part of the 2003 Energy and Water Development Act, Congress established the U.S. Army Corps of Engineers, Alaska District (Corps), Alaska Villages Erosion Technical Assistance program to obtain information on the costs of continued erosion and relocation of Newtok and six other Alaskan communities. The 2004 Energy and Water Development Act clarified that the 2003 funds were “to be used to provide technical assistance to Alaskan communities at full federal expense...to address the serious impacts of coastal erosion.” In subsequent legislation, Congress asked to know about the practicality of and costs associated with relocating Newtok, collocation with another community, and the no-action alternative. In addition, Section 22 of the Water Resources Development Act (WRDA) of 1974 (Public Law 93-251), as amended, provides authority for the U.S. Army Corps of Engineers to assist states, local governments, and other non-federal entities to prepare comprehensive plans for the development, use, and conservation of water and related land resources. The Corps conducted environmental baseline studies including cultural resources studies under this program.

The Corps conducted archaeological surveys in 2002 and 2005 to assist Newtok in planning and evaluating costs of development of Mertarvik and eventual relocation. The surveys were designed to provide Newtok Traditional Council and other entities with basic information on cultural resources in the vicinity of Mertarvik for compliance with Section 106 of the National Historic Preservation Act (36 CFR 800).

Yukon-Kuskokwim Culture History

Dumond (1984) divided the cultural history of southwestern Alaska into the Paleoarctic, Northern Archaic, Arctic Small Tool, Norton, and Thule traditions. The Paleoarctic tradition is marked by blade and core technology. Igiugig (ILI-00002) on the south end of Iliamna Lake and Koggiung (NAK-00020) on the Alaska Peninsula were two occupation sites that aided in defining this tradition. Microblades, cores, and core tablets were recovered along with large blades, transverse burins, and scrapers. The radiocarbon data suggest an occupation date from between 10,000 and 8,000 years before present (BP; Dumond 1984).

This was followed by the Northern Archaic tradition, which was dated to as early as 6,000 years BP. Chipped lanceolate projectile points or knives, heavy, chopper-like semilunar scrapers, and small endscrapers were representative of this tradition, specifically the Brooks River Beachridge phase from the upper Naknek River drainage. Dumond (1984) suggested that procurement strategies focused on land-based resources based on tool types.

The Arctic Small Tool tradition appeared in the Naknek River drainage around 3,800 years BP. The assemblage consisted of microblades, small burins, small bifacially chipped sideblades and endblades, unifacially flaked knives, triangular bifacial harpoon endblades, adze blades with polished bits, and an occasional lance or double-edged knife blade. Village and camp sites excavated indicated that some winter occupations and a considerable number of summer ones focused on salmon and other riverine resources (Dumond 1984).

The Norton tradition is represented by three phases that date between 2,300 and 1,000 years BP. The Smelt Creek phase had plain and impressed fiber tempered pottery, a small
collection of unstemmed small basalt projectile blades, and a large number of stemmed ones. The Brooks River Weir phase was derived from the Smelt Creek phase. Changes were made in the style of endblades, sideblades, and ground slate ulu forms. The pottery changed shape, increased in size, and was more often check-stamped or plain. New styles of projectile points marked the third phase, the Brooks River Falls phase. Sideblades were almost completely replaced by ground slate ulus, and large, double-edged, ground slate knives or lance blades became common. The pottery was almost always plain and very thick (Dumond 1984:100).

The Thule tradition is associated with the late prehistoric Eskimo culture. The Naknek River drainage has three recognizable phases — the Brooks River Camp, Brooks River Bluffs, and Pavik phases. Large barbed and stemmed ground slate lance and knife blades and thick, globular shaped pottery dominate the Brooks River Camp phase. During the Brooks River Bluffs phase, there were fewer large lance blades, the style of projectile inset blades and adze blades changed, and relatively thin pottery appeared. The last phase, the Pavik phase, contained Russian and American trade goods. These replaced most stone implements except ground slate inset blades. Organic tools included harpoon dart heads, occasional plain toggling harpoon heads, dart heads designed to take a stone or metal projectile inset tip, and other arrow and bird dart pieces. Settlements of significant size began to appear on the coast. Populations grew in the interior, but the settlements remained small. Interior and coastal focuses became apparent in the archaeological record during this tradition (Dumond 1984:102).

Vanstone (1984a) further defined these two recent ecological focuses. The maritime peoples in the communities of Bristol Bay, the Yukon Delta, and Nunivak Island focused on sea mammal hunting and seals in particular. Some inland resources were harvested; caribou and salmon were significant resources to the people at the mouths of rivers and some bays (Vanstone 1984a). The inland peoples in riverine communities primarily on the lower Yukon River, the lower and central Kuskokwim River, and the Togiak and Nushagak rivers (Vanstone 1984a) focused on fish supplemented by caribou. Occasionally, they traveled to the coast to hunt sea mammals. The dialectical differences between the inland and coastal groups were small and did not impede the movement of people between the two groups. Inland and coastal people exchanged goods and had established relationships that encouraged this movement (Vanstone 1984a, 1984b).

Some researchers proposed that the maritime adaptation was older. In this scenario, maritime people penetrated the interior by moving up the rivers and their tributaries in the recent past. It has also been posited that a much older inland population related to the Arctic Small Tool tradition farther north may have preceded this penetration and may even have been partly ancestral to the inland people (Vanstone 1984a).

The people of Newtok, Chefornak, and Nelson Island (Tununak, Tooksook Bay, Nightmute) are known as the Qaluyaarmiut or the “People of the Dip Net (Newtok Traditional Council 2004:3). People of this region move seasonally to harvest resources where they are available. Movement between settlements at various times of the year was common. The Qaluyaarmiut have a shared history of the origins of Nelson Island and their ancestors. It begins that Nelson Island was created when Raven threw dirt on an ice flow to provide an area of land for his wife to have a footing on, so that she would not be swept out to sea. During this time,
“the land was thin” but since then vegetation appeared and debris washed ashore, thickening the land (Fienup Riordan 1980, 1983).

Generally, people in the Yukon-Kuskokwim region were contacted by Russians and other Europeans relatively late. Captain James Cook was the first European to explore Alaska’s northwest coast in 1778, when he traveled as far north as Icy Cape. The next expedition into the region did not take place until 1818, when Russian explorer Eremei Rodionov traveled up the Nushagak River, portaged, and then sailed down the Kuskokwim River. There were several other minor expeditions the same year. Between 1818 and 1841, the Russian-American Company built several posts in southwest Alaska and began exploring and trading more regularly in the region. However, little information about southwest Alaska’s Yup’ik residents was recorded until Lavrentiy Zagoskin was sent to travel the region’s river systems in 1848 to collect ethnographic samples and information on traditional trade routes between Alaska and Siberia (Oswalt 1999). Lieutenant Zagoskin noted that the Qaluyaarmiut (erroneously calling them the Agulmyut) conducted fairly profitable trade activities with Russian trading posts. Beaver, otter, fox, and seal were traded with noted success. Most Russian-American fur trading activities at the time concentrated on the upper Kuskokwim River. Despite this, a small pox epidemic in 1838-1839 seriously reduced the populations of the region (Oswalt 1963). This was the first of many such epidemics.

Edward W. Nelson, an employee of the Smithsonian and weather observer for the U.S. Army Signal Corps at St. Michael from 1877 to 1881, also traveled around the lower Kuskokwim River region and collected ethnographic samples and information. He grouped most of Nelson Island and the lower Yukon-Kuskokwim delta as the Kaialigamut, but grouped the residents of western Nelson Island and Nunivak Island as the Nunivagmut. While Nelson spent a relatively great deal of time in the lower Kuskokwim area and collected ethnographic information and specimens, his discussion of the region is not specific enough to elicit information about Nelson Island residents at the time (Nelson 1899; Oswalt 1999).

During the Russian occupation of Alaska, few Russian Orthodox priests worked in the lower Kuskokwim region. More missionaries began to work in the region after Alaska was purchased by the United States. The first mission on Nelson Island was built by the Moravian Church in 1898 at Tununak. Missionaries often complained that their work was hampered by the Yup’ik people’s insistence on continuing their seasonal movements. Throughout these epidemics and the establishment of boarding schools and missions, Nelson Island residents continued their lifestyle, despite the considerable population movement that ensued (Vanstone 1984b).
Today, Qaluyaarmiut live on Nelson Island in Toksook Bay, Tununak, and Nightmute, Newtok, and Chefornak (to the south). Other Qaluyaarmiut areas or camps commonly mentioned are Nunakauyak (another name for Toksook Bay, settled by Nightmuters in 1964), Chakchak, Umkumiut, and Kipnuk (south of Chefornak on the Kuguklik River). Figure 4 illustrates the relationships between some of these communities and camps.

Newtok (Niugtaq, rustling of grass) was settled in 1949, when seasonal flooding and erosion at Old Kealavik (Kayalivik or Keyaluvik) became insurmountable. According to the Newtok Traditional Council, the history of Newtok is as follows:

Around 1949 the village was relocated from Old Kealavik three miles away, to its present location... and a school was built in 1958. The existing village site was the farthest point up river the BIA [Bureau of Indian Affairs] barge could access to off-load the school building materials. The residents of Newtok continued a migratory pattern through the 1960s, summering in fish camps on Nelson Island and wintering at the current village site. After the fishing season, Newtok’s men often traveled to Bristol Bay to work in the canneries. Thus Newtok remained primarily a winter residence for its people. By the 1970s, however, the snow machine and modern housing projects had replaced dog teams and sod houses in
Newtok; residents began to assimilate elements of American culture and to remain more stationary (2004:3).

Some of this seasonal movement was to settlements or camps on Nelson Island (e.g., Umkumiut), while others traveled north to Hooper Bay. The Qaluyaarmiut continue to be subsistence oriented. Herring and their eggs is a critical food staple, but numerous other species of fish are harvested as well. Seal, waterfowl, berries, other vegetation, and bird eggs are also important. Residents travel inland on the network of rivers and lakes to hunt caribou and moose. Distribution of subsistence foods throughout the region serves to reinforce a unified cultural identity.

Newtok incorporated as 2nd class city in 1976 and was dissolved in 1997. The Newtok Traditional Council is responsible for all local government affairs. There are 323 residents in Newtok. In November 2003, the United States Congress authorized an exchange of lands between the U.S. Fish and Wildlife Service and the Newtok Native Corporation. The land acquired through this legislation was to be used for the purpose of relocation and includes Takikchak Creek and Mertarvik.

Known Cultural Resources in Project Area

There are a variety of cultural resource sites around Nelson Island – rock cairns, hunting blinds, fish camps, settlements, clay collection areas, etc. Three sites have been reported near the mouth of Takikchak Creek - XBl-00156, XBI-00157, and XBI-00158. The Bureau of Indian Affairs recorded the sites on an allotment (AA-11435, parcels A, B, and C). According to the BIA reports, XBI-00156, XBI-00157, and XBI-00158 were part of an old winter camp and summer reindeer herding station called Taqikcaq. XBI-00156 includes two graves that date to the 1940s. XBl-00157 consists of five depressions and a group of 55-gallon drums, and XBI-00158 includes 13 depressions. The sites have not been evaluated for the National Register of Historic Places. Figure 5 shows the location of these sites as they relate to the 2002 and 2005 archaeological surveys.

There are no cultural resources reported in the Alaska Heritage Resources Survey database in Newtok. However, two frame buildings were reportedly dismantled in Old Kealavik and moved to Newtok in the 1940s. Most residents lived in semi-subterranean sod houses for at least a decade before more frame structures could be built. In addition, the now abandoned BIA school was completed in 1958.

Methods

Two pedestrian surveys of the project area with differing purposes were conducted. Margan Grover (Corps Archaeologist), Greg Carpenter (Corps Geologist), and Charles E. Diters (Regional Archaeologist, U.S. Fish & Wildlife Service) arrived at Mertarvik on September 16, 2002. The purpose of the visit was to survey the proposed relocation site for archaeological deposits and historic remains prior to soil drilling and testing, as well as to prepare for the land transfer between U.S. Fish & Wildlife Service and Newtok Native Corporation. Between August 22 and August 28, 2005, Grover, Marcia Heer (Corps Regulatory Specialist), and Estrella Campellone (Corps Biological Technician) went to Mertarvik to conduct archeological, wetland
and, vegetation surveys. Most of the data collection was conducted in the vicinity of the relocation site, runway 1, runway 4, the proposed barge landing, and the potential borrow site. Due to intense rainstorms and strong winds, work in the field had to conclude on August 28th (a day earlier than planned).

Both the 2002 and 2005 surveys took place at Mertarvik, the new town site for the community of Newtok. Mertarvik is approximately 4 miles southeast of Newtok on the north shore of Nelson Island (Sections 1, 2, 3, 4, 9, and 10, T8N, R87W, USGS Baird Inlet D-7 and Sections 34, 35, and 36, T9N, R87W, USGS Baird Inlet D-7).

A public meeting was held at the end of the 2002 survey and another in February 2006. There have also been several meetings of the Newtok Relocation Working Group – an interagency coalition designed to expedite the relocation effort and eliminate duplication of effort. The archaeological surveys and other environmental studies are the result of this coordination and were aimed at eliminating the need for multiple agency archaeologists to visit Mertarvik.

Figure 5. Archaeological survey routes, corresponding features, and archaeological sites.

Results

Mertarvik
During public meetings and conversations with members of the community, we were told that the only archaeological resources in the vicinity of the new town site were along Takikchak Creek. Residents reported there were no remains of reindeer corrals or rock cairns. In addition, community members remembered that the reindeer herding station reported by Bureau of Indian Affairs archaeologists was only a camp. It was pointed out that the community gets water from Mertarvik Spring when there is no water available in Newtok.

In 2002, the team traveled by boat to Takikchak Creek. With the tide up, it was difficult to find the channel into the creek until the tide receded slightly. The boat could not go very far up the creek. We examined the west side of the creek and could see fenced graves (figure 6), but were not able to reach it. Newtok residents informed us that these were not Newtok people. We did not observe the remains of the camp or corral in the areas examined. After looking more closely at a USGS map, it was decided that the sites were probably on the east bank of Takikchak Creek, which could not be reached in the limited time available.

![Figure 6. XBI-00156, fenced graves (Sept 2002).](image)

We then traveled by boat to Mertarvik Spring and noted that rocks had been piled around the mouth of the creek to form a pool. The boat operator drank water from the pool, adjusted the rocks, and then began tearing away wood from a beaver dam near the head of the creek. We walked along the length of the proposed relocation site to a potential rock quarry (figure 7). No cultural resources were observed. We had hoped we would be able to walk to the east bank of Takikchak Creek, but the distance was too much for the time we had between tides.
In 2005, we examined several proposed runways, the proposed barge landing, and revisited the potential rock quarry. We attempted to reach the east bank of Takikchak Creek, but were traveling on foot and the limited day light hours made it difficult to reach the creek and return to camp safely. Figure 5 illustrates those areas examined for cultural resources and their association with the area of potential effect.

No cultural resources were observed at runways 1 and 4 or the rock quarry. Small test pits were placed throughout the area of potential effect for the purpose of defining wetlands. These tests were observed and examined by Grover. No cultural material was observed in any tests. At
the rock quarry, exposed bedrock made subsurface testing impossible. Exposed ground-surfaces were examined for archaeological material and features such as rock cairns or hunting blinds. None were observed.

At the barge landing, there were at least six circular pits (XBI-00183 - figures 8 and 9). The pits were in a grassy clearing area between two small drainages, which indicates the area is well drained. They were each about 1 meter in diameter. Their depths varied from 0.25 meters to 1.0 meters. Vegetation had grown into some of the pits, while the dirt walls of others were exposed. In a previous letter, the Corps reported these features as possible herring pits. After consulting with Newtok residents, it was determined that these are likely pits from collecting clay for making pottery.

There were also structural remains along the beach north of XBI-00183 (figure 10). The flattened barrels had circular holes cut in them and there were nail holes along the margins. They appeared to have once served as roofing or possibly siding. The remains were laying on the surface, could have washed onto the bank during a storm, and may have come from a camp to the north or east, as there were no other indications of a structure in the area.

Figure 9. Possible clay pits at barge landing (XBI-00183, Aug 2005). Red arrows indicate some of the pits.
Newtok

No formal archaeological survey has been conducted in Newtok to date. However, during trips for Mertarvik surveys and for public meetings, several observations were made about cultural resources at the current town site. Some background on these observations is provided here as reference. For purposes of this report, these resources will not be evaluated for the National Register of Historic Places. The relocation to Mertarvik has the potential to effect historic properties in Newtok because demolition or relocation of some structures will be required, and environmental restoration may be needed for infrastructure such as tank farms, sewage lagoons, and dumps. Residents may choose to maintain structures at Newtok for camps or recreation; however, details of the ‘abandonment’ of Newtok have not been resolved. For that
reason, the effect of the relocation on cultural resources in Newtok will not be assessed in this report.

When residents moved from Old Kealavik to Newtok, two buildings were reportedly dismantled and then rebuilt at Newtok. Residents indicated that one was the Catholic Church (figure 11) and the other was George Tom's house nearby. The two structures are similar in size, materials, and design. No written resources were referenced to confirm these statements. More research will need to done to confirm which buildings in Newtok were moved from Old Kealavik and when they were built. With this information, their significance to local and regional history may be properly assessed for the National Register of Historic Places.

![Figure 12. Catholic Church in Newtok (Nov 2006).](image1)

![Figure 13. George Tom's House (August 2005).](image2)

Construction of the Bureau of Indian Affairs school was completed in 1958. According to accounts of Newtok residents, Old Kealavik was suffering from erosion and flooding. When the Bureau of Indian Affairs sought to establish a school for their community, local leaders and elders decided that this was an opportunity to move to a new location. A site was chosen and the
Bureau of Indian Affairs sent materials on a barge for the school. The current location of Newtok is the farthest the barge could reach up the Ninglick River to the chosen site. A new school was built in 2001 and the old school now stands unused. At this time, the BIA school is not yet 50 years old. As the relocation continues over the next few years, the building will surpass that benchmark and it’s eligibility for the National Register of Historic Places will need to be assessed.

Newtok residents state that when they moved from Old Kealavik to Newtok, most families lived in semi-subterranean sod houses. Over time, wood frame homes were built and the sod houses were abandoned. When asked about the locations of these sod houses, informants generally gestured toward the east side of Newtok. An archaeological survey was not conducted in Newtok, but the remains of sod houses are not immediately apparent while walking through Newtok. Interviews aimed at understanding the history of Newtok should be conducted and architectural and archaeological surveys in Newtok should be completed to identify cultural resources eligible for the National Register of Historic Places.

Cultural Resource Evaluations and Recommendations

XBI-00156, XBI-00157, XBI-00158

More research will be needed before the graves at XBI-00156 can be evaluated for the National Register of Historic Places. Under the National Register evaluation process, a cemetery is a collection of graves that may be marked or unmarked, fenced, indicated on maps, or identified through testing. The graves at XBI-00156 are surrounded by a fence and marked with at least one wooden marker. Both Criteria Considerations C and D may apply to XBI-00156. According to National Register Bulletin #15 *(How to Apply the National Register Criteria for Evaluation)*, a grave “of a historical figure is eligible if the person is of outstanding importance and if there is no other appropriate site or building directly associated with his or her productive life.” This includes graves being evaluated for information potential (Criteria Consideration C). Similarly, a cemetery “is eligible if it derives its primary significance from graves of persons of transcendent importance, from age, from distinctive design features, or from association with historic events” (Criteria Consideration D). More investigation is required to evaluate the graves for these criteria considerations of National Register of Historic Places.

Two resources along Takikchak Creek - XBI-00157 and XBI-00158 - could not be relocated. XBI-00157 consists of five depressions and a group of 55-gallon drums and XBI-00158 includes 13 depressions. Both sites are associated by Newtok residents as part of a winter camp and summer reindeer herding station called Taqikcaq. Few archaeological sites associated with reindeer herding have been investigated by archaeologists in Nelson Island. If the sites can be located and their potential to yield information evaluated, they may eventually be found eligible.

Mertarvik Spring

Mertarvik Spring is an important water source for Newtok residents, who have modified and maintained the spring over time. The community plans on continuing to use the spring after the move to Mertarvik. Other than the rock alignment for pooling water, there were no other cultural resources observed in the vicinity. It is difficult to determine how long the spring has been in existence and more information about the spring’s history should be sought from Newtok.
and Nelson Island residents. The development plan for Mertarvik includes a buffer around the spring. As part of the National Register of Historic Places, Mertarvik Spring may be evaluated as a site, "the location of a significant event, a prehistoric or historic occupation or activity, or a building or structure, or a building or structure, whether standing, ruined, or vanished, where the location itself possesses historic, cultural, or archaeological value regardless of the value of any existing structure" (National Register Bulletin 15 How to Apply the National Register Criteria for Evaluation). It may be sub-categorized as landscape natural feature (National Register Bulletin How to Complete the National Register Registration Form). The spring may also be evaluated as a traditional cultural property, "because of its association with cultural practices or beliefs of a living community that (a) are rooted in that community's history and (b) are important in maintaining the continuing cultural identity of the community" (National Register Bulletin 38 Guidelines for Evaluating and Documenting Traditional Cultural Properties).

The period of significance for Mertarvik Spring has not been determined, although it is likely within the last few hundred years. According to National Register Bulletin 38, there are two fundamental integrity questions – does the site "have an integral relationship to traditional cultural practices or beliefs" and "is the condition of the property such that the relevant relationships survive?" (p.11). Ethnographic or ethnohistorical research will help identify whether the spring can be associated with traditional cultural values and if it has retained integrity.

Based on current information, it is not known whether Mertarvik Spring is associated with events significant to local or regional history (Criteria A). According to Bulletin 15, a property may be eligible under Criteria A for its relationship to traditional cultural values:

Traditional cultural significance is derived from the role a property plays in a community's historically rooted beliefs, customs, and practices. Properties may have significance under Criterion A if they are associated with events, or a series of events, significant to the cultural traditions of a community (p.13).

Particularly if evaluated as a traditional cultural property, this may include events such as "specific moments in history or a series of events reflecting a broad pattern or theme." The time or period of the event may be ambiguous (National Register Bulletin 38, p.12-13).

Based on limited information from Newtok residents, Mertarvik Spring has not been associated with the lives of persons significant in the past (Criteria B). Nor does the spring embody distinctive characteristics of type, period, or method of construction, represent the work of a master, or possess high artistic value (Criteria C). The spring also has not yielded information important in understanding history; however, future ethnographic or ethnohistoric research may find that the site has that potential (Criteria D). It is recommended that Mertarvik be evaluated as a traditional cultural landscape as plans for relocation continue. Newtok residents have expressed a desire to retain control of their cultural heritage and identity, which may prevent outside researchers from addressing this question. It is possible that the community may choose to collect a history of the spring and manage the resource on their own.

Because Newtok residents are dedicated to preserving the quality of the spring, planning has included means to avoid impacts to Mertarvik Spring; therefore, with regard to the spring, there will be no historic properties affected by the relocation to Mertarvik.
Gravel Source, Runways, and Proposed Location for Mertarvik

The gravel source or rock quarry is east of the Mertarvik town site. A road may be developed from the community to the gravel source. The general route between Mertarvik and the gravel source was examined in both 2002 and 2005. The area has a low potential for cultural resources and none were observed. There will be no historic properties affected by construction of a road and gravel source near Mertarvik.

At the time of the 2005 survey, five runway alignments were proposed. Two were not examined because they were either environmentally unacceptable or were unacceptable to Newtok residents. Runways 1 and 4 were surveyed, and no cultural resources were observed. The areas have low potential to yield cultural resources. There will be no historic properties affected by construction of runway 1 or 4 near Mertarvik.

XBI-00183

At the proposed barge landing, there were at least six circular clay pits (XBI-00183) as well as structural remains along the beach. There is no apparent connection between the remains and XBI-00183. Based on vegetation and sedimentation, clay was removed from XBI-00183 within the past few hundred years (no datable material was recovered at the site). Based on current information, the site is not associated with events that made a significant contribution to the broad patterns of history (Criteria A), is not associated with the lives of persons significant in the past (Criteria B), and does not embody distinctive characteristics of type, period, or method of construction, represent the work of a master, or possess high artistic value (Criteria C).

XBI-00183 does have the integrity to yield information important in understanding history (Criteria D). Pottery from Nelson Island has been researched for at least the last half century (VanStone and Lucier 1992; VanStone 1954; Lutz 1970; Oswald 1956; Dumond 1969; Oswald 1952; Frink and Harry 2007). Recently, Frink and Harry (2007) collected ethnographic and historic data on pottery production techniques, and then conducted experimental replication of traditional pottery types. Important research questions that may be addressed by information from XBI-00183 include:

- what quality of clay was used for ceramics on Nelson Island,
- what methods were used for collecting clay,
- is this clay source similar to others in the Nelson Island region,
- over what territory was pottery made from this clay brought or traded (using chemical analysis), and
- can this clay be associated with a specific type, technique, design, or people?

The site is in its original location and appears to retain its elements of design. There has been no development along the northern shore of Nelson Island and the area has likely not changed aesthetically in centuries (setting and feeling). XBI-00183 has the original elements deposited when they were being used as a clay source (materials) and clearly exhibits the qualities of a clay source (workmanship). Finally, the physical features of the site convey its historic character (association). XBI-00183 is eligible for the National Register of Historic Places under Criteria D as a late pre-contact clay extraction site. With regard to this property, the relocation to Mertarvik would result in historic properties adversely affected. It is
recommended that any development of the barge landing take precautions to avoid this resource and that eventually a more detailed archaeological excavation of XBI-00183 be conducted to recover information.

References cited

Ackerman, Robert E.

Bureau of Indian Affairs

DePew, Alan D. and Charles E. Holmes

Dumond, D.E.

Fienup-Riordan, Ann

Frink, Lisa and Karen Harry

Holmes, Charles E. and Diane K. Hanson

Lucier, Charles V. and James W. VanStone

Lutz, Bruce
Nelson, Edward William
1899 *The Eskimo About Bering Strait*. Smithsonian Institution Press, Washington DC.

Okada, Hiroaki, Atsuko Okada, Kunio Yajima, Osahito Miyaoka, and Chikuma Oka
1982 *The Qaluyaarmiut: an anthropological survey of the southwestern Alaska Eskimos.* Hokkaido University, Faculty of Records, Department of Behavioral Sciences, Sapporo, Japan.

Oswalt, Wendell H.
1999 *Eskimos & Explorers*. University of Nebraska Press, Lincoln.

USFWS

VanStone, James W.
ALASKA DISTRICT TRIP REPORT
Alaska Villages Erosion Technical Assistance
Newtok, Alaska
Draft – 9/27/05

LOCATION OF TDY: Takikchak, Nelson Island, Alaska
Approximately 4 miles south east of Newtok on the north shore of Nelson Island (Sections 1, 2, 3, 4, 9, and 10, T8N, R87W, USGS Baird Inlet D-7 and Sections 34, 35, and 36, T9N, R87W, USGS Baird Inlet D-7).

DATE OF TRAVEL: September 16-19, 2002 and August 22 to August 28, 2005

PURPOSE: Archaeological surveys and Wetland delineation fieldwork.

NARRATIVE
Margan Grover (Environmental Resources Archaeologist), Greg Carpenter (Soils and Geology), and Charles E. Diters (Regional Archaeologist, U.S. Fish & Wildlife Service) arrived at Takikchak on September 16, 2002. The purpose of the visit was to survey the proposed relocation site for archaeological deposits and historic remains in preparation for soil drilling and testing.

During August 22 to August 28, 2005, Grover, Marcia Heer (Regulatory Specialist), and Estrella Campbellone (Environmental Resources Biological Technician) went to Takikchak, the proposed Newtok relocation site on Nelson Island, with the purpose to conduct archeological, as well as wetland and vegetation surveys. Due to intense rainstorms and strong winds, work in the field had to conclude on August 28th (a day earlier than planned).

Figure 1: August 2005 survey areas and features.
ARCHAEOLOGICAL SURVEY 2002 and 2005

Most of the data collection was conducted in the vicinity of the relocation site, runway 1, runway 4, the proposed barge landing, and the potential borrow site. The green hatch in figure 1 indicates the approximate areas surveyed.

Known cultural resources
Near mouth of Takikchak Creek (XBI-154, XBI-155, XBI-156)
Barge Landing (XBI-183)

Areas examined that have no cultural resources
The proposed townsite
The runways along the hills south of the proposed townsite
The proposed rock/gravel source
(See Figure 5).

Figure 2. GPS points from archaeological survey, corresponding features, and archaeological sites.

DISCUSSION
The archaeological sites along Takikchak Creek were reported by BIA and are on an allotment (AA-11433, parcels A, B, and C). According to the BIA reports, XBI-00156, XBI-00157, and XBI-00158 were an old winter camp and summer reindeer herding station. XBI-00156 includes two graves that date to the 1940s. XBI-00157 consists of 5 depressions and a group of 55-gallon drums and XBI-00158 includes 13 depressions. During a public meeting and conversations with members of the community, we were told that the only archaeological resources were those along
Takikchak Creek. They reported there were no remains of reindeer corrals or rock cairns. In addition, community members remembered that the reindeer herding station was only a camp. They reported that they fished in the unnamed creek, that moose and bears had been seen occasionally in the area, and that there was a problem with beavers in the unnamed creek. It was pointed out that the community gets water from a fresh-water spring when there is no water available in Newtok.

On September 18, 2002, Murphy John took us in his boat to the unnamed creek. With the tide up, it was difficult to find the channel into the creek. We examined other areas, and then tried to enter the unnamed creek when the tide receded slightly. The boat could not go very far up the creek. We examined the west side of the creek. We could see the fenced grave (figure 3), but were not able to reach it. We did not observe the remains of the camp or corral in the areas examined. After looking more closely at a USGS map, it was decided that the sites were probably on the east bank of Takikchak Creek.

![Figure 3. XBI-00186, fenced graves (Sept 2002).](image)

In 2005, we examined several proposed runways, the proposed barge landing, and the proposed rock quarry. We attempted to reach the east bank of Takikchak Creek, but we were traveling on foot and the limited day light hours made it difficult to reach the Creek and return to camp safely. No cultural resources were observed at runways 1 and 4 or the rock quarry.

At the barge landing, I recorded at least six circular pits (XBI-00183) that resembled herring pits (figures 4 and 5). The pits were in a grassy clearing area between two small drainages, which indicates the area is well drained. They were each about 1 meter in diameter. Their depths varied from 0.25 meters to 1.0 meters. Vegetation had grown into some of the pits, while the dirt walls of others were exposed. Along the beach, I observed some structural remains (figure 6). The flattened barrels had circular holes cut in them and there were nail holes along the margins. They appeared to have once served as roofing or possibly siding. The remains were laying on the surface and could have washed up onto the bank during a storm, as there were no other indications of a structure in the area.
Figure 4. Possible herring pits at barge landing (XBI-00183, Aug 2005). Pink flags mark some of the pits.

Figure 5. Detail of a possible herring pit at the barge landing (Aug 2005).
A more detailed report is being prepared, but if you have any questions about cultural resources and fieldwork status, please feel free to contact Margan Grover at 907-753-5670.

ACTION ITEMS:
- The known archaeological sites will need to be fully documented in order to evaluate them for the National Register of Historic Places, as required under Section 106 of the National Historic Preservation Act. Recommend documentation include sub-surface testing, which requires permission from the land-owners.
- Need to assess affects of relocation from Newtok to Takilchik on subsistence practices and land use on residents in Newtok, Tucksook Bay, Tununak, and Nightmute.
Ms. Judith Bittner
State Historic Preservation Officer
Office of History and Archaeology
550 West 7th Avenue, Suite 1310
Anchorage, AK 99501-3565

Dear Ms. Bittner:

Newtok Traditional Council, with assistance from the U.S. Army Corps of Engineers, Alaska District (Corps), is planning to build an evacuation center and access road at Mertarvik, Alaska (Sections 1, 2, 3, 4, 9, and 10, T8N, R87W, and Sections 34, 35, and 36, T9N, R87W, USGS Baird Inlet D-7; figure 1). Enclosed please find the report Archaeological Evaluation of Cultural Resources Around Mertarvik, Alaska: Proposed Relocation Site for Newtok. The report describes the results of two archaeological surveys (2002 and 2005) conducted by the Corps, evaluates some of the resources for the National Register of Historic Places, and presents recommendations for compliance activities as planning for the relocation from Newtok to Mertarvik progresses. The surveys discussed in the report comprised the area of potential effect for the relocation site, including the current undertaking (evacuation center and access road). The purpose of this letter is to provide you with a copy of the report, to seek your concurrence on a determination of eligibility, and your concurrence on an assessment of effect for the evacuation center and access road.

Figure 1. Present town site of Newtok and planned town site for Mertarvik.
Cultural Resources Survey Results

The enclosed report discusses several cultural resources in the vicinity of Mertarvik, the relocation site for the community of Newtok (figure 2). Not all reported sites in the vicinity were examined by archaeologists; however, the immediate vicinity of Mertarvik was surveyed. This includes Mertarvik Spring, two proposed runways, the town site, the proposed rock or gravel source, and the barge landing.

Mertarvik Spring is an important water source for Newtok residents, who have modified and maintained the spring over time. The community plans on continuing to use the spring after the move to Mertarvik. Other than the rock alignment for pooling water, there were no other cultural resources observed in the vicinity. It is difficult to determine how long the spring has been in existence and more information about the spring's history should be sought from Newtok and Nelson Island residents. The development plan for Mertarvik includes a buffer around the spring. The current study did not collect sufficient data to adequately evaluate Mertarvik Spring. For the National Register of Historic Places.

The gravel source or rock quarry is east of the Mertarvik town site. A road may be developed from the community to the gravel source. The general route between Mertarvik and the gravel source was examined in both 2002 and 2005. The area has a low potential for cultural resources and none were observed. At the time of the 2005 survey, five runway alignments were proposed. Two were not examined because they were either environmentally unacceptable or were unacceptable to Newtok residents. Runways 1 and 4 were surveyed, but no cultural resources were observed. The areas have low potential to yield cultural resources.

At the proposed barge landing, there were at least six circular clay pits (XBI-00183) as well as structural remains along the beach. There is no apparent connection between the remains and XBI-00183. The enclosed report provides a detailed assessment of the site for the National Register of Historic Places. In summary, XBI-00183 does have the integrity to yield information important in understanding history (National Register Criteria D) and retains integrity of location, design, setting,
feeling, materials, workmanship, and association. XBI-00183 is eligible for the National Register of Historic Places under Criteria D as a late pre-contact clay extraction site.

Description of the undertaking

Currently, the Newtok and the Corps are designing a road and evacuation center at Mertarvik. Boring locations along the road and evacuation center will be drilled and sampled to a depth of 15 to 30 feet using a self propelled Nodwell-mounted drill rig with low ground-pressure tracks. XBI-00183 is near the proposed road, but will be flagged as an "exclusion zone." No ground disturbing activity will take place in the vicinity of the site. It has not been determined how the Nodwell will be moved from the barge landing area to the uplands.

Mertarvik Road and Evacuation Center

![Map of Mertarvik Road and Evacuation Center](image)

Figure 3. Proposed undertaking - access road and evacuation center.

Determinations of Eligibility and Assessment of Effects

With regard to the effects of a relocation of Newtok to Mertarvik, the Corps is only developing the access road and evacuation center. The undertaking will include landing a barge and equipment at the proposed barge landing site, geotechnical borings along the proposed road and at the proposed evacuation center, and eventual construction of the road and evacuation center. With regard to XBI-00183, the proposed undertaking would result in **historic properties adversely affected**, provided the area is flagged so ground disturbing activity avoids the site. The proposed road alignment and evacuation center site were surveyed and no cultural material was observed (see enclosed report); therefore, there will be **no historic properties affected** by landing at the proposed barge landing site, geotechnical borings along the proposed road and at the proposed evacuation center, and construction of the road and evacuation center.
We seek your concurrence on the determination of eligibility and assessments of effect. Please send comments to Ms. Margan Grover at the above address, or via e-mail: margan.a.grover@poa02.usace.army.mil. If you have any questions about the project, please call Ms. Margan Grover at 907-753-5670.

Sincerely,

[Signature]

Jay R. McConnell
Chief, Environmental Resources Section

Cf: wr enclosure
Moses Carl, President, Newtok Traditional Council
August 31, 2007

File No.: 3130-1R COE/Environmental 3330-6 XBI-183

SUBJECT: Relocation of Newtok to Metarvik, Alaska
Proposed evacuation center

Guy R. McConnell
Chief, Environmental Resources Section
U. S. Army Corps of Engineers, Alaska District
PO Box 6898
Elmendorf AFB, AK 99506-6898

Dear Mr. McConnell,

The State Historic Preservation Office received on August 9, 2007, your letter and attached report by Margan Allyn Grover titled Archaeological evaluation of cultural resources around Metarvik, Alaska: Proposed relocation site for Newtok (March 2007). We have reviewed your submitted materials under Section 106 of the National Historic Preservation Act.

We understand that the current undertaking consists of the construction of an evacuation center, access road and associated barge landing at the future townsite of Metarvik. We concur with your finding that XBI-183 (Clay pits) located near the proposed barge landing, is eligible for the National Register of Historic Places under criterion D. We also concur that no historic properties will be adversely affected by the current undertaking provided that the area containing XBI-183 is flagged and avoided during construction.

As indicated in the archaeological survey report, the current undertaking is part of a larger project to relocate the Newtok community to Metarvik. We encourage the Army Corps of Engineers to coordinate with other agencies involved in the relocation efforts and comprehensively evaluate the long term effects of this project on Newtok and Metarvik.

Please contact Stefanie Ludwig at 269-8720 if you have any questions or if we can be of further assistance.

Sincerely,

Judith E. Bittner
State Historic Preservation Officer

JEB:sl
Environmental Assessment Scoping Summary

Newtok Relocation Project – Pioneering Phase

Newtok Village Council

May 6, 2016
Introduction

The Federal Emergency Management Agency (FEMA) has a pending Hazard Mitigation Grant Program (HMGP) funding request from the Newtok Village Council (NVC) through the Alaska Department of Homeland Security and Emergency Management (DHA&EM), which administers HMGP for FEMA. The NVC has applied for funds to relocate 12 residential structures from Newtok to Mertarvik, consistent with its Strategic Management Plan - Newtok to Mertarvik (Plan) and specifically the 'Pioneering Phase' therein. Additionally, the NVC has Bureau of Indian Affairs (BIA) Tribal Transportation Program funds available to build some roads in Mertarvik which would also support the pioneering elements. The NYC also anticipates funds from the U.S. Department of Housing and Urban Development's (HUD) Office of Native American Programs Imminent Threat Grant Program that would support additional critical infrastructure for occupancy of the 12 homes once relocated to Mertarvik. The proposed or pending federal actions require review per the National Environmental Policy Act (NEPA) of 1969 and related environmental and historic preservation statutes and executive orders; as implemented by each respective agency's NEPA implementing regulations.

This report includes a summary of formal scoping activities completed for the proposed Newtok Relocation Project per NEPA and consistent with the Council on Environmental Quality's (CEQ) NEPA regulations, 40 Code of Federal Regulations Part 1501.7, Scoping. The purpose of 'scoping' is to inform the scope, focus, and content of an Environmental Assessment (EA). FEMA's NEPA scoping informally started in October 2015, after the project was determined programmatically eligible for funding; and included gathering available information about Newtok and Mertarvik, including prior federal environmental review and initiation of coordination with federal and state resource agencies and stakeholders.

The proposed action, for NEPA purposes, includes elements of the NVC’s Plan pioneering phase. This includes FEMA-funded relocation of 12 homes from Newtok to Mertarvik and BIA-funded road construction in Mertarvik. HUD funds may be available to provide needed interim utilities to support occupancy of the homes once in Mertarvik. Furthermore, there may be other ‘connected actions’ funded or planned by non-federal entities that will require outlining in the EA. Early coordination was done with BIA to collaborate on an EA that would satisfy both agency’s NEPA requirements, as well as with HUD in anticipation of their funding; with detailed discussion deferred to the outcome scoping and pending other NYC funding actions.

Much of the planning and details associated with this formal scoping effort were FEMA-coordinated because its proposed action, relocating 12 homes, has the most significant public interest and need for feedback. Additionally, during a FEMA site visit to Newtok on November 12, 2015 the NVC requested FEMA participate in a public meeting to explain the EA process to its residents, in the interest of transparency and community decision-making. The scoping effort was fully coordinated in advance with the NVC, DHS&EM), Alaska Department of Commerce, Community and Economic Development (DCCED), and BIA.
Public and Agency Scoping Notices

The notification of scoping efforts and the public comment period, March 25 to April 25, 2016 was done through published ads, web-posting, emails, and mailings as follows:

- Information about scoping was posted on DCCED’s Newtok webpage on March 23, 2016: https://www.commerce.alaska.gov/web/dcra/PlanningLandManagement/NewtokPlanningGroup.aspx; this included a Notice of Intent to Prepare an EA, scoping information, and comment sheet.
- The Notice of Intent to Prepare EA was published in the March 23, 2016 issue of The Delta Discovery and in the March 24, 2016 issue of The Tundra Drums, which included the public meeting information and link to DCCED website for additional information.
- Emails were sent on March 24, 2016 to 78 individuals making up a broad contact list for federal/state/regional/Tribal entities mostly associated with Newtok Planning Group, attached were the Notice of Intent, scoping information, and comment sheet, and an invitation to attend the April 11, 2016 agency meeting (contact list available on request).
- Direct mail was sent on March 24, 2016 to 40 individuals making up a select list (subset of emails) of federal/State/regional entity leadership, including the Notice of Intent, scoping information, and comment sheet (mailing list available on request).

Scoping Meetings

Two meetings were scheduled to provide information about the proposed project and invite comments, as follows.

Newtok Public Meeting:

- Held on April 5, 2016 from 7 to 9pm at the Newtok School gymnasium.
- Meeting was well attended with 36 folks signing in and several others joining after meeting started. Participants included several homeowners of the 12 homes proposed to be relocated, NVC members, Newtok Corporation members, and Newtok residents.
- Scoping information was made available as well as comment sheets, and posters were affixed on walls that had information about the proposed project including conceptual plans or community layout of Mertarvik.
- Meeting format included a power point guided presentation (available upon request) to briefly explain the grant processes, the NEPA process and specifically scoping, the proposed project, and what feedback was sought.
- After introductions by the NVC and Sally Cox, DCCED; presentations were done by Science Kilner, FEMA; Brent Nichols, DHS&EM; Andrea Meeks, CRW; and Romy Cadiente, Newtok Relocation Coordinator.
- The Newtok School principal, Grant Kaskatok, translated the presentation in Yup’ik Eskimo.
- Notes of the meeting were taken by Ramona VanCleve, FEMA, and others.
- Chris Allard, Denali Commission, and Don Antrobus, ANTHC also attended.
- Several participants asked questions and provided comments consistent with the intent of scoping, summary below.
Anchorage Agency Meeting:
- Held on April 11, 2016 from 1 to 2pm at DCCED office, 550 W 7th Ave, Anchorage, a conference line was made available for folks to call in
- Meeting was well attended with 22 folks present in person and signed in (available on request), and several others joining the conference line
- Participants included NVC members and their attorney, Senator Murkowski’s Office, Denali Commission, DCCED, AK DCRA, DHS&EM, Governor’s Office, HUD, BIA, ANTHC, VSW, CEQ, CCHRC, TCC, AVCP
- Scoping information was made available as well as comment sheets
- Meeting format included a power point guided presentation, same as provided at public meeting (described above), after an introduction by Sally Cox, DCCED, the presentation was made by Science Kilner and Brent Nichols and Julie Stoneking, BIA, provided information on roads
- Notes of the meeting were taken
- Several participants asked questions and provided comments consistent with the intent of scoping, summary below

Summary of Comments
Written or verbal comments were provided by state agencies, one business, and individuals or households. The comments mainly expressed concerns about alternative details and community/social/public service plans at Mertarvik. When questions were asked about the process or project and answers were known by those presenting, they were provided to participants. The below table summarizes the scoping comments received and they are listed in no particular order.

<table>
<thead>
<tr>
<th>Commenter</th>
<th>Method</th>
<th>Comment Summary</th>
</tr>
</thead>
</table>
| USACE AK District, Environmental Section | voice mail | • Some prior environmental reviews completed for Mertarvik
• planned EA should be comprehensive |
| USDA, Rural Development, Palmer AK | email | • Supportive of project and combined EA effort
• USDA can provide loans to NVC for future development in Mertarvik for full range of housing and infrastructure needs |
| AK Dept. of Environmental Conservation, Solid Waste Program | email | • Recommendations provided for Mertarvik landfill facility
• Newtok currently has no permitted landfill facility so no waste may be disposed of there |
| Gazewood & Weiner Attorneys at Law | letter via email | • FEMA should limit the scope of its EA to its funded action, and not include BIA TTP funded roadwork in Mertarvik, which will have separate environmental review, information provided about BIA NEPA reviews |
Commenter Method Comment Summary

<table>
<thead>
<tr>
<th>Commenter</th>
<th>Method</th>
<th>Comment Summary</th>
</tr>
</thead>
</table>
| Relocation | verbal | • Relocation efforts should be coordinated with past, ongoing and future environmental reviews by other agencies, referred to 2008 USACE EA completed for Mertarvik Evacuation Center
• Concern over disruptions, extent and timing of environmental review relative to proposed summer 2016 work in Mertarvik
• Is a EA level of review appropriate for relocations, referred to FEMA’s NEPA regulations for Categorical Exclusions
• Alternatives may not be relevant
• Encouraged buyout as the preferred option |
| Purpose and Need | verbal | • What is timing or schedule for relocations, 2016 or 2017, need to move is urgent
• Ninglick River erosion severe, a lot concern over 4 structures closest to bank
• Flooding along Newtok River (slough) and lake has been getting worse
• Continued ground settling, land subsidence, is worsening flooding and erosion risks |
| Proposed Action | verbal | • Ground is very soft, there will need to be enough gravel to move and set up homes so they are stable
• Will homes be able to be loaded onto a barge
• Can homes be moved in the winter, over ice road
• If relocation sites aren’t good will funding be lost
• What are plans for more homes in Mertarvik
• Concerns over damage to the homes during the move and whether repairs would be made
• Could the homes be dismantled and reassembled |
| Alternatives | verbal | • Building a flood control/erosion wall or levee won’t work
• Many questions about buy-out alternative and how this would work and impact relocations and substitutions
• If buyout, demolition debris could be burned on-site instead of transporting to landfill (expensive barging and disposal costs)
• If buyout, building materials could also be salvaged and reused since building materials are costly to ship in and scarce |
<table>
<thead>
<tr>
<th>Commenter</th>
<th>Method</th>
<th>Comment Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental/Natural/Cultural Resources</td>
<td></td>
<td>• Impacts to fish need considered, salmon and seals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ground is very soft, wetlands, will need to be enough gravel to move and set up homes</td>
</tr>
<tr>
<td>Social/Community/Public Services</td>
<td></td>
<td>• What are plans for health care or a medical facility/clinic in Mertarvik for pioneer residents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• What are plans for transportation in and out of Mertarvik, by air or boat, to support pioneer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>residents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• What are plans for education, will a school be built to support relocated families with children</td>
</tr>
</tbody>
</table>

Scoping Conclusions

The comments received during this scoping effort will be helpful to finalize the scope of the proposed action for an EA. They also help focus continued coordination and collaboration with federal funding agencies and stakeholders that have connected actions and concurrent NEPA requirements. Implementation details of the proposed action and the buyout alternative will need to be further explored/evaluated for presentation in a draft EA, and to the NVC to support decision-making. Additionally, given the urgency to take action and anticipated extent of time to further develop supporting infrastructure in Mertarvik, interim mitigation measures will need to be explored at least for the structures most at risk to riverine erosion. Given the interest over community, social, or public services and facilities in Mertarvik, the draft EA will need to articulate the NVC's plans to address these critical elements that will be needed to support permanent occupancy of relocated 'pioneer' residents in Mertarvik.

Next Steps

The following includes tasks and coordination needed to draft the EA.

- Scope of EA federal action, including connected actions, needs finalizing with NVC, BIA and HUD; and other stakeholder as necessary
- Details on roles (lead/cooperating federal agency), responsibilities, EA tasks, documentation, and EA schedule need to be defined initially amongst FEMA, BIA and HUD, and then coordinated with the NVC and others
- Information gaps need to be addressed to draft a meaningful EA, make findings of effect, determine mitigation measures, and further NEPA decision-making, including further public involvement; these includes provision of:
 - Finalized Mertarvik community survey/layout, housing master plan (at least for relocated homes and those that may be built with HUD loans)
 - Preliminary infrastructure design and engineering plans for the pioneering phase (community and quarry roads, utility retrofits for potable water, wastewater management, solid waste management, power and bulk fuel storage)
Essential community/public/social service plans, including facilities, are needed for Mertarvik that detail how pioneers residents will be supported (education, health care, emergencies, transportation by air or boat, communication, supplies)
- Draft EA and complete necessary additional resource studies and agency consultations
- Complete public involvement to present and make available draft EA findings
- Finalize EA and agencies issue decision documents
- Federal funds released for use and implementation
[This page intentionally left blank]
TABLE OF CONTENTS

Introduction
Executive Summary ... P.05
Project Description .. P.06

Existing Conditions
Literature Review: ... P.07
Site Visit ... P.09
Implications for Retrofit Feasibility .. P.13

Recommendations
Summary ... P.14
Stage 1: Protect the Foundation .. P.15
Stage 2: Construct the Shell ... P.21

Materials & Cost Analysis
Stage 2 Materials List ... P.24
Stage 2 Materials Costs .. P.28
Stage 2 Project Cost Summary .. P.36

Appendix
Appendix A: SIP Roof Best Practices P.38
Appendix B: Shell Construction Drawings P.40
This page intentionally left blank
To:
Paul Charles
Romy Cadiente
Newtok Village Council
Newtok, Alaska

The Cold Climate Housing Research Center is pleased to have been tasked by the Newtok Village Council to complete a feasibility study on the construction of the Mertarvik Multi-Purpose Building, formerly known as the Mertarvik Evacuation Center (MEC). CCHRC has been deeply committed to aiding the people of Newtok in any way that adds to the larger relocation effort to the new town site at Mertarvik. The MEC project has undergone many changes and challenges since CCHRC and the community last worked on the concept in 2009. We are honored to be invited back to the table to work on finishing this important building.

The following report describes an in-depth analysis of the project up to this point, observations on site, and recommendations for finishing the project in a constructive and meaningful way. As the Council is well aware, both construction costs and energy costs in rural Alaska remain high, even as funding is becoming less available. Leadership of the Council has shown wisdom of their efforts to find a way to complete the building economically, while insuring that the MEC is energy efficient and long lasting. The results should create a useful facility that is not a cost burden to maintain and operate.

As Alaskan Communities are faced with adapting to a changing climate, Newtok will be an inspiration to others burdened with the necessity to relocate their communities. The Council’s commitment to finish the MEC will set the stage for following activities to establishment Mertarvik as a viable and healthy village for generations.

All of us at the Cold Climate Housing Research Center wish the Newtok Village Council success in moving forward with the completion of this important structure, and pledge our support in future efforts.

Sincerely,

Jack Hébert
The Mertarvik Evacuation Center

In 2015, CCHRC was asked by the Newtok Village Council (NVC) to provide an assessment of the Mertarvik Evacuation Center (MEC) Project. The MEC project began in 2008, and has passed through various stages of funding, design, construction, and change in that time. A brief timeline of the MEC project is below:

MEC TIMELINE

2008: At the invitation of the Newtok Planning Group and the former Newtok Traditional Council, CCHRC works with the community to create a concept design for a place of refuge at the Mertarvik site that could serve multiple purposes over the course of the relocation from Newtok to Mertarvik. In 2009 CCHRC publishes this concept design in a 30% Design Analysis Report (DAR) for the Tribe.

2010: DOT/PF (Project Manager), PDC Engineering, and Bezek Durst Seiser (BDS), Architects are awarded the contract to take the 30% DAR and produce Construction Documents for the building. The foundation is changed from earth-bermed on bedrock to a raised steel pile foundation. The floorplan, roof structure, and mechanical approach is also changed.

2011: The foundation for the MEC is constructed by Cornerstone Construction. The rest of the building cannot be completed due to budgetary concerns.

2012: DOT/PF and BDS are released from the project and a redesign commences. The redesign is taken up by George Watt Architects of Colorado. Working with Earthcore, a producer of Structurally-Insulated Panels (SIPs), they redesign a shell for the building at roughly 75% design.

2013: Earthcore SIPs are delivered to the site. However, they are the wrong thickness. 6-5/8” instead of the specified 10-1/4”. The frame is not constructed. George Watt and Earthcore are released from the project.

May 2015: Summit Construction of Tok, Alaska, submits an Assessment and Construction Feasibility Study of the MEC foundation and design. The report declares the foundation sound, and posits strategies to complete the building. The strategies in the report outline a cost of $300,000 to finish design and $601/SF - $730/SF to finish the building. The Newtok Village Council (NVC) deems this too expensive to be feasible, and begins looking for other strategies.

November 2015: CCHRC is invited by the NVC to travel to Mertarvik and advise the Council on the Summit Report, the MEC Assessment, and the strategies for completing the building.

The NVC requested that CCHRC perform the following tasks:

1. Review/assess the Summit Construction Report and familiarize deficiencies in such report identified by the owner.
2. Review and assess all plans: the original CCHRC design, DOT/PF MEC design, Earthcore SIPs MEC design.
3. Travel to Mertarvik in order to review and assess the existing MEC foundation.
4. While at Mertarvik, perform an inspection/inventory of SIPs at Mertarvik.
5. Develop alternative action plans and cost estimates including alternatives within existing budgets and or 150% of existing budget.
EXISTING CONDITIONS

Literature Review:
MEC Plans Assessment and Construction Feasibility Study

As requested by NVC, CCHRC Staff reviewed the following documents:
1. Summit Consulting Services, Inc: Mertarvik Evacuation Center Plans Assessment and Construction Feasibility Study
2. Alaska DOT/PF Mertarvik Evacuation Center Construction Plans Bid Set
3. George Watt Architecture Sheets A2.0, A2.1, and A2.2 for redesigned Mertarvik Evacuation Center
4. Mertarvik Evacuation Center Structural Insulated Panels Specifications.

Summit Consulting Services Assessment and Feasibility Study

In May 2015 Summit Consulting completed a thorough and detailed assessment of the MEC. Its report analyzes challenges to the project that led to its eventual discontinuation and proposes two feasible alternatives to remobilizing the project and finishing the building. In the interest of avoiding repetition of work, this report began with a literature review of the Summit Report. NVC requested that CCHRC Staff pay particular attention to the design and costs associated with finishing the building, as Summit’s plans were deemed by NVC to be prohibitively expensive.

Key Observations from Literature Review:

- The SIPs were delivered to Mertarvik, and one crate was disassembled and inspected. It appears that the full building envelope was delivered to the site. However, the SIPs were not consistent with the procurement document specifications. They are 6-3/8” thick with 7/16” thick oriented strand board (OSB) sheathing. This is significant because the SIPs were specified to be 10-1/4” thick. Mertarvik is in a very cold region and energy costs are likely to be quite high in the new village. The R-value of the delivered SIP panels is 40% less than specified (R-33 vs. R-55.5) and will result in significantly higher heating costs for the building. It is not in the best interests of the community to build a building that they will not be able to afford to heat. Additionally, SIPs in Alaska should be sheathed in plywood as opposed to OSB, which is significantly more vulnerable to water infiltration, swelling, and rot. The SIPs will need to be protected.
- Although the foundation of the MEC was designed by one party (DOT/BDS/PDC), and the SIP shell was designed by another (Watt/Earthcore), “there appears that there is not a conflict pertaining to the existing foundation and the use of the SIPs as designed. Framing plans utilizing the SIPs were approved by the Fire Marshal for the SIP building but that permit has expired.” (Summit, 2)
- Summit was not able to make a site visit to Mertarvik, which is remote and not accessible for part of the year. CCHRC Staff were requested to visit the site to inspect the foundation, SIPs, and other materials. A description of that site visit is included in this report.
- Summit analyzed both designs. The DOT/BDS design called for spray foam insulation, while the Watt Design called for SIPs. Summit recommends spraying polyurethane insulation to the inside of the structure if the DOT/BDS design is selected.
- The Glulam beams incorporated by BDS are custom-made and expensive, and would also require heavy equipment and specialized labor. The plan to use spray foam insulation also requires specialized equipment, however, this equipment would likely already be at the site for ongoing housing projects. The delivery of the spray foam is a logistical challenge. Spray foam barrels cannot be allowed to freeze, so barge delivery would
The order of assembly as drawn on the plans would need to be adjusted in order to provide the desired R-value.

Additionally, both less costly and more efficient than the battens create an air gap between the SIP, 2x4 battens, 1-1/2" XPS insulation board followed by siding.

Summit modeled the two buildings and found that the original BDS design would use 11% less heating fuel than the Watt design. The SIP design is recorded as being R-38.5 plus R-7.5 for the 1.5" of rigid insulation applied to the outside (Watt plans A2.2.2 and A2.2.3). However, this wall section is cause for concern. If the battens create an air gap between the SIP and the layer of XPS, then the R-value of the XPS would be negated. The order of assembly as drawn on the plans would need to be adjusted in order to provide the desired R-value. Additionally, CCHRC uses an industry-accepted aged R-value of R-6 per inch for this polyurethane foam material. CCHRC calculates that the overall aged R-value of the assembly would be R-33 for the SIP, with no added R-value for the XPS in that arrangement.

Summit provided two options for roof systems: one with dormers in the loft and one without, that are both less costly and more efficient than the BDS plans. This report evaluates these two options and posits a third option.

Summit concludes that the George Watt plans are not finalized. "There were minimal structural and no mechanical and electrical disciplines included in the plans. The architectural plans were effectively at the 75% design level... Even though the SIP panels arrived in the summer of 2012 and a construction permit was granted, no construction took place. Subsequent discussions with the Department of Fire and Life Safety resulted in an agreement whereby the completed plans would be provided prior to any construction taking place." (Summit, 9-10)

Summit interviewed all team members involved in the design and construction of the MEC foundation, analyzed the blow counts, dynamic pile strain tests, and factors of safety. The piles of the MEC were driven to between 20-34' and rest on bedrock. The Summit Report concludes that the existing pile foundation is more than adequate to support the MEC building. "A sacrificial deck was placed over the trusses and I-joists after the foundation was completed. The plywood decking was coated with a black mastic sealant which helps shed water and snow away from the structural members below. The decking is beginning to weather, and CCHRC was asked to inspect the protective decking on the site visit. This is discussed in the Site Visit Section.

The Summit report concludes that the foundation as constructed is suitable for either the original plan or the revised SIPs plan. Because the foundation rests on bedrock, the difference in loads will not be an issue.

A crate inventory was performed by David Cramer during the summer of 2013, and Summit concludes from his findings that 570 were delivered to site. However, during the inventory one crate was opened and all 30 SIPs from that crate were left out in the weather. When CCHRC staff visited the site in 2015 these SIPs had deteriorated to the point where they are no longer usable. This leaves 540 SIPs on site. The original design calls for 558 SIPs. "It is clear that the SIPs manufactured and shipped do not match the procurement specifications which indicate a 10-3/4" thickness. We [Summit] have found no indication of when or his change was implemented or agreed to." (Summit, 16).

Earthcore SIPs' parent company may still exist, but its Alaska branch Kenai Manufacturing LLC, does not appear to be in business at this time.

To finish the MEC building, the Summit Report states that $300,000 is needed for design. For construction, depending on which of the two strategies are selected, costs will run $601/SF or $730/SF, and the annual O&M costs will be approximately $45,000.

CCHRC Conclusions from Literature Review

- Summit's Report is thorough and professional. Its research is currently the most comprehensive review of the challenges facing the completion of the MEC building, and should be considered a primer to future contractors involved in the project.

- The steel pile foundation of the MEC, although it pertains to an earlier design iteration, is structurally sound and robust. The eventual completion of the building should be attainable without significant changes to the foundation as built.
However, the wood floor decking of the MEC is vulnerable to decay, rot, and eventual loss. An inspection of the floor system was deemed necessary. If possible, methods of protecting the decking from further degradation should be considered a first step in the critical path of finishing the project.

- Since the SIPs are already at site, they represent an asset that can be used in the completion of the project. Ordering new materials will be more expensive. However, NVC was not sure if the SIP panels were still usable. If they were found to be in good condition during the site visit, the SIPs still do not have the R-value specified in procurement, and the cost of heating the building may turn the MEC into an untenable financial liability for the new community instead of a resource. If the SIPs are to be incorporated into the completed building, some method of adding R-value to the structure will need to be investigated.

- The Summit Report posits two structural modifications for the MEC that greatly simplify the original design. However, the NVC is concerned about the procurement of heavy equipment necessary for these changes, as much of the heavy equipment used in the construction of the foundation has been demobilized and removed. The current state of heavy equipment at the site was unknown before the site visit. Additionally, the report only addresses gravity loads, not shear/lateral loads. CCHRC will use these strategies posited as a starting point, and will complete a structural strategy for the building.

- The cost of completing the building outlined in the Summit Report is significant, and it will be challenging for NVC to find lump sum funding for this project amidst a long list of other needs for the new community site. Methods to reduce cost will need to be considered, including a staged approach that emphasizes prioritized steps towards completion that can be funded separately.

Site Visit

On October 29, 2015 CCHRC design staff performed a site inspection with the following goals:

1. Assess the condition of the existing floor framing at the Mertavik Evacuation Center (MEC).
2. Assess the condition of the Structural Insulated Panels that were delivered to the site by Earthcore SIPs.
3. Document heavy equipment and job site materials present.

Floor Framing

According to the May 2015 study performed by Summit Consulting Services, the MEC foundation and floor system construction was completed in fall 2011. It appears that at that time a sacrificial layer of ¾" CDX plywood sheathing was applied over the completed beam and joist framing to protect them from the elements. A liquid coat of black waterproofing sealant of unknown type was then applied over this floor sheathing to provide additional weather protection to the joists and beams underneath.

The protective decking runs past the structure of the foundation on two sides (the east and west, long dimension) and ends flush with the perimeter Glulam beams on the other two sides (the north and south, short dimension). The decking was unable to be constructed to run past these edges due to the presence of metal porch material. However, the Glulam beams and the steel under the decking do not appear to be degrading. The steel is not exhibiting undo corrosion, and the Glulam beams to not appear to be damaged by water infiltration.

It appears that after 4 years of exposure to the elements, this temporary waterproofing strategy has begun to fail. Currently, the seams at most sheets are allowing rain and snowmelt to wick into the framing underneath. During rainy periods, water is ponding on the floor, and CCHRC Staff observed water running through many of the joints in the sheathing. Wetting has occurred along the tops of the joists and beams, and those areas are starting to show signs of long-term moisture-related discoloration. This ongoing water intrusion is of serious concern, and over a relatively short time it will lead to rot that affects the structural integrity of the floor framing.

Therefore, before anything else is done in the development of the building, it is imperative that the existing foundation, beams, and floor joists be protected from the elements as soon as possible. If this is not done, by the time funding has been allocated to finish construction of the building, the floor joists will no longer be usable.
Above: The decking overhangs the long side of the structure, protecting the Glulam beam. On the short side, it ends flush.

Above: Water has begun to infiltrate the temporary decking above the structure. Water can be seen wetting structural members from above.

Above: The sacrificial decking meant to protect the floor is beginning to degrade and let water down into the structural members.

Above: The perimeter Glulam beams and steel columns appear to be in good condition.

Above: Discoloration of structural joist members by water infiltration through the decking.
Earthcore Structural Insulated Panels

According to the calculations in the Summit Report, 570 SIPs were to be shipped to the site. When one crate was opened, and its content extrapolated to the remaining unopened crates, this number was determined to be confirmed. 558 SIPs are necessary to construct the George Watt Design, which would have left twelve extra SIPs in case any were damaged. The SIPs were shipped as blanks, and the design intent was that windows and other openings would be cut on site. However, when the crate was opened to inspect the SIPs in 2012, the 30 SIPs contained in that crate we left to weather and decay. At the time of CCHRC's site visit in 2015, they had degraded to the point that they are no longer usable. According to Summit's calculations, there are now 540 SIPs on site. This would be 18 short of completing the building as designed by George Watt Architects, assuming zero waste and no errors or damaged SIPs once the rest of the crates are opened.

The CCHRC team and NVC conferred and decided that opening all of the remaining crates without a place to store them and protect them from the weather could potentially damage more materials, especially since there is currently no funding or schedule for completing the building. Instead, CCHRC Staff pried one panel of one crate open enough to pull away the Tyvek weather coating inside, inspecting the quality of the OSB SIP, in order to ascertain if any damage or degradation had occurred to the SIPs within the crates themselves. CCHRC Staff observed that the crated SIPs appear to be unaffected by weather since the delivery, and are likely still usable at this time.

Heavy Equipment

At one time, a drill rig, excavator, and crane were present on site and used by various contractors to construct the well, septic, and foundation of the MEC, as well as other facilities at the Mertarvik site. However, all those pieces of heavy equipment have been demobilized and barged out. There are currently two pieces of heavy equipment remaining at the Mertarvik site. A Volvo Michigan L190 Loader is located adjacent to the cargo container yard. This loader is not likely to be useful to the process of finishing construction of the MEC, as there is no dirt work to be done and the foundation has been completed. The loader is damaged, with a flat tire and what appears to be a rear axle out of alignment. A Gradall 534D9-45W Squirt Boom is also present at the Mertarvik site. The squirt boom has a 66″ carriage, 36′ vertical reach and 9000lbs capacity fully extended. This piece of equipment has keys held by NVC and would be very useful for the completion of the shell structure of the MEC. It would also be necessary in order to move materials from the barge landing to the MEC. At the time of CCHRC's site visit, the squirt boom was not operational. But the local foreman stated that it required only a new battery to be operational.

In addition to the heavy equipment, two job connexes are situated at the site, filled with various tools and files associated with the MEC foundation construction. An inventory of available tools would be helpful, and the connexes could be cleaned up and used for future jobs. Consequently, future contractors will not need to add the mobilization cost of shipping one out to site. Additionally, four small outbuildings are located adjacent to the MEC foundation. They have overhead garage doors and would be beneficial as materials storage during construction.
Above: The crated SIP panels are staged on Durabase mats adjacent to the existing MEC foundation.

Above: The SIPs uncrated on a prior site visit were left out in the elements and are no longer usable.

Above: The SIPs still within their protective crating appear to be as yet undamaged by the elements and should still be usable.

Above: A Volvo L190 Loader was left at the Mertarvik Site but is currently damaged.

Above: A Gradall Squirt Boom was left at site and would be useful for continued construction. Keys are present and its battery must be replaced, but was otherwise reported to be in good condition by the local residents.
Implications for Retrofit Feasibility

Status of Foundation

The MEC pile foundation is sound. The steel is built to a standard that could accommodate either of the two designs initially pursued, as well as both options posited by Summit Construction. However, the decking is under threat from moisture and exposure to the elements. It is possible that raising funding for the building's completion will take long enough that by the time it arrives, the decking will no longer be usable.

Status of the SIPs

The Structurally Insulated Panels were not constructed to specification and their overall R-value may create a financial liability to the community due to heating costs. Additionally, there are currently 18 SIPs short (assuming zero wastage) of the number necessary to complete the George Watt Design. Although the SIPs that are still crated appear to be in good condition, there are concerns over quality control in the fabrication process. Based on anecdotal conversations with materials suppliers familiar with this particular product line in the state, other panels from this supplier (Earthcore) have been known to warp or contain voids in the insulation. However, they are already at site. Any way that they can be used would mean less materials to be purchased and shipped to complete the building. A method of using the on-site SIPs that adds value to the overall project should be pursued.

Status of Heavy Equipment

The status of heavy equipment is unknown and can add significant cost and logistical constraints to the project. Any construction method that limits the need for heavy equipment should be considered.

State of Funding

The stop-and-start process of design, redesign, mobilization and demobilization of this building thus far has shown that acquiring bulk funding for a project of this size will be a significant challenge. Additionally, the staging of the completion of the building should address its place within the overall staging of relocation. Three homes were constructed too early at Newtok and never occupied, and these unheated homes were rendered uninhabitable due to mold damage before members of the community were able to relocate. For this reason, it is imperative that funding be staged according to sensible stages of construction, in the event that bulk, single-source funding be unobtainable. Additionally, staging the completion of the building will need to consider its place within the overall relocation master plan.
Cold Climate Housing Research Center

RECOMMENDATIONS

Summary

Prior analyses of the project by others concluded that in order to finish the building, between $5 million and $5.4 million would need to be raised for construction, plus another $300,000 for design (Summit Report: p.24). This is a difficult amount of money to raise at one time, especially with so many other projects that will need to take place concurrently in the greater relocation effort. Additionally, the original use for the building, as an evacuation center, may no longer be prudent. Instead, a multi-purpose space should be emphasized, one that can provide various functions during the relocation effort. In order for the existing foundation and construction materials to contribute to a usable building for the community, a new approach to staging and funding should be pursued that emphasizes three separate stages of completion, to be described in detail in the following section of the report. These three stages are:

1. Protect the foundation
2. Complete the shell
3. Complete the building

Protecting the existing foundation must commence immediately, so that no further degradation can occur and no completed work needs to be redone. Acquiring funding and permitting for this stage will be much more attainable than a bulk allocation for a completed building. CCHRC recommends completing this stage concurrently with the upcoming housing construction season, as a local crew can complete the floor protection work without mobilizing a separate contractor.

Completing the shell should occur as its own stage, unless a bulk allocation is available for the completion of the entire building. Completing the shell will further protect the foundation from the elements, can be completed without specialized equipment, and can go through an expedited code review and permitting process. Additionally, the shell can be constructed in such a manner (such as leaving out the interior gypsum sheathing) that it will not be subject to mold and degradation should it be used seasonally or uninhabited for a period after construction. This is a concern, as the planning of the overall relocation may or may not provide for immediate funds to heat and ventilate the shell upon its completion. Additionally, this stage will minimize and streamline design time. The shell can be used as valuable covered storage space for materials involved in future construction projects pertaining to the greater relocation. It can also serve as a protective structure for a temporary, pioneer watering point that utilizes the existing well. The shell structure may be heated with a temporary furnace for periods where it is necessary to the relocation process.

Once the foundation is protected and the shell has been constructed, the completion of the final building can be properly staged with the overall relocation effort. The design hours, program review, and permitting can occur after or during the shell’s construction, streamlining the overall building process. In addition to a staged approach to funding and construction, CCHRC recommends a shell structure design that is not overly dependent on heavy equipment, as this has been a logistical issue in the historical process of completing the building. An attempt to modify and supplement Summit Consulting’s approach to structural completion with this emphasis is outlined in the next section of this report.
STAGE 1: PROTECT FOUNDATION

Stage 1: Protect the Foundation

This narrative describes possible strategies to preserve the existing foundation and provides a recommendation to better protect the floor until that date when construction can resume.

CCHRC investigated the following options to protect the floor until construction resumes:

1) Liquid Rubberized Asphalt

The least expensive approach would be to apply another layer of liquid rubberized asphalt coating, effectively maintaining the same strategy as was used initially. However, the flooring is already saturated with water and getting the waterproofing to bond to wet plywood is unlikely. More plywood would also need to be ordered. As demonstrated by the first coating, under the best of circumstances with dry plywood, this approach was a quick fix that did not stand the test of time. Although the exact brand is unknown, materials of this type are generally designed to act as a patch to existing roofs or as foundation damp proofing. They are not designed to withstand ponding water when applied to a large flat surface covered in plywood sheathing.

2) 60mil EPDM

EPDM rubber roofing is a good choice for flat wood sheathed surfaces and is commonly used in commercial roofing. Tradesmen are familiar with the product and its application is fairly straightforward. However, it is costly, heavy, and only comes in 20-foot-wide rolls. CCHRC asked for an initial quote from a local distributor and it came to ~$2000 per roll with a total of 4 rolls required to cover the floor. This does not include shipping. Aside from cost, the biggest technical issue would be the overlapping joints of the rolls, which would have to be sealed water tight. This process requires ideal conditions, wherein a crew would need to apply 110 foot runs of volatile seaming glue. This would complicate the installation and further drive up the cost.

3) One-Piece Geomembrane

Geomembranes are often used in containment applications such as oilfield services and mining. They are durable, low temperature-rated, comparatively light, and can be made to size. Alaska Tent & Tarp in Fairbanks quoted a price of $5000 for an approximate 60’ x 110’ membrane to cover the MEC floor. In addition to being made to order, this geomembrane is significantly lighter than EPDM. The data sheet for the specified membrane is included in this section.

It is our recommendation that the floor be covered with Geomembrane before summer 2016. The return of summer temperatures will accelerate the growth of wood fungus. Once the membrane is in place, then the floor can start to dry from underneath. Given the typically wet climate of Nelson Island, it is unknown how long it will take for this to occur. However, it is CCHRC’s conclusion that this strategy is the best hope for saving the structure while the community attempts to raise sufficient funds to finish the construction of the building.

Logistics and Process

The membrane will arrive in one roll that weighs about 750lbs. Ideally, the membrane could be transported from the boat landing to the site using the blue boom forklift that is currently parked nearby. Once the membrane
has been placed on the floor, it will require a crew of 6 people roughly 1-2 days to spread it out and secure it. Currently, the floor sheathing is secured with 16d duplex nails. As these nails stand proud of the subfloor, they will wear through the membrane. Before the membrane is installed, the duplex nails will need to be pulled and the floor plywood will need to be secured with flush-driven regular 10d nails or screws.

An accurate floor measurement will need to be made before ordering the membrane. The membrane should be made large enough such that it hangs over all edges by a foot. Overhanging the membrane will protect the floor and provide secure attachment for 2x4 wind cleats around the perimeter. In addition to wind cleats around the perimeter, enough 2x4 lumber should be on hand to run 6 evenly spaced rows down the length of the floor. Fastening 6 rows of 2x4's in the field will help provide wind uplift resistance to the membrane across the area of the floor. All 2x4's should be fastened with 4" minimum length pan/flat head structural screws. Example brands would include Spax and Headlok:

http://www.spax.us/en/power-lags.html#Vk-7xWTnv6Y

It is recommended that a separate crew not be specially mobilized for this work, as that will add expense. Instead, CCHRC recommends that the crew already tasked with building housing in the village complete this work concurrently with that project. This saves on mobilization costs, per diem, and demobilization. CCHRC predicts the foundation could be protected by a crew of six over the course of two days, for $9,158.8.

Mertarvik Evacuation Center
The Cold Climate Housing Research Center | December 2015

Platform Protective Seating; Material List

<table>
<thead>
<tr>
<th>QTY</th>
<th>NOTE</th>
<th>COST (EST.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 ea</td>
<td>2x4x8' (3.79 ea)</td>
<td>$682.20</td>
</tr>
<tr>
<td>500 ea</td>
<td>4" HeadLOK SPAX or equiv* structural screws ($150/tub)</td>
<td>$300.00</td>
</tr>
<tr>
<td>5 lbs</td>
<td>2" ceramic coated deck screw</td>
<td>$30.00</td>
</tr>
<tr>
<td>10 ea</td>
<td>tips for each of the 2 types of screw</td>
<td>$30.00</td>
</tr>
<tr>
<td>1 ea</td>
<td>Alaska Tent & Tarp Geomembrane 115'x64'</td>
<td>$5500.00</td>
</tr>
</tbody>
</table>

Total Materials Cost (EST.): $6,438.00

Above: A materials list for protecting the foundation, with pricing at time of publication
Platform Protective Sheathing; Installation Notes

A: 7x rows of 2x4x8' cleats at approx. 10' OC, and 2 shorter rows to cap ends

B: 4" gap between all 2x4 x 8' cleats, to allow for drainage

C: Screw pattern as follows
 On water-side edge: 24" o/c
 On all other edges: 32" o/c
 In field: 48" o/c
Platform Protective Sheathing; Detail Notes

A: 8218 GeoMembrane laid on top of 3/4” plywood

B: Underside cleat, on long edges, to be attached before membrane
Platform Protective Sheathing; Material List

1 ea Alaska Tent & Tarp Geomembrane 115'x64'

8218 LOW TEMPERATURE USE

<table>
<thead>
<tr>
<th>Specification</th>
<th>Standard</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>8218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Fabric Type</td>
<td>Polyester: 3.0 oz/yd² Flexible PVC</td>
<td>Polyester: 102 g/m² Flexible PVC</td>
</tr>
<tr>
<td>Base Fabric Weight (nominal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finished Coated Weight</td>
<td>18.0 oz/yd²</td>
<td>610 g/m²</td>
</tr>
<tr>
<td>ASTM D751</td>
<td>+27.1 oz/yd²</td>
<td>+70/-35 g/m²</td>
</tr>
<tr>
<td>Tongue Tear ASTM D751</td>
<td>8' x 10' sample @ 12 in/min 100/100 lbf</td>
<td>20.3 cm x 3.0 cm sample 93.0 cm/min 445/445 N</td>
</tr>
<tr>
<td>Grab Tensile ASTM D751</td>
<td>230/200 lbf</td>
<td>1024/900 N</td>
</tr>
<tr>
<td>Strip Tensile ASTM D751 Procedure B</td>
<td>200/140 lbf/in</td>
<td>178/125 daN/5 cm</td>
</tr>
<tr>
<td>Adhesion ASTM D751</td>
<td>10 lbf/in</td>
<td>9 daN/5 cm</td>
</tr>
<tr>
<td>Dielectric Weld</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrostatic Resistance ASTM D751 Procedure A</td>
<td>200 psi</td>
<td>1.38 MPa</td>
</tr>
<tr>
<td>Low Temperature ASTM D2136</td>
<td>Pass -67°F</td>
<td>Pass -59°C</td>
</tr>
<tr>
<td>1/8" mandrel, 4 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flame Resistance FTMS 191A Method 5910</td>
<td>Sample not consumed within 2 minutes</td>
<td>Sample not consumed within 2 minutes</td>
</tr>
</tbody>
</table>

Chris Gipson
Commercial Project Coordinator

320 Front Street
Fairbanks, AK 99701
Phone: 907-452-6722
Fax: 907-452-6724
chris@alaskatent.com

Alaska Tent & Tarp
alaskatent.com

Mertarvik Multi-Purpose Building Retrofit Feasibility Study
HeadLOK is a heavy duty structural wood screw that is ideal for many wood applications including deck framing, stair stringers, attaching rigid foam (SIPs), fences, kitchen cabinets and more. The HeadLOK flat head fastener requires no predrilling and offers higher design shear than 3/8" lag screws. The SpiderDrive™ System contains 8 points of contact, maximizing bit fit and reducing stripping. HeadLOK zips right in and creates a great finished look.

- 3/8" lag screw replacement
- No predrilling
- Flat head provides great finished look
- Sharp gimlet point for fast installation into wood and OSB
- Aggressive thread for holding and withdrawal strength
- Free SpiderDrive™ bit in every package

For HeadLOK technical information and drawings, see the Technical Docs section below. For technical documentation of all our structural wood screws, see our Technical Resources page.
STAGE 2: SHELL CONSTRUCTION

Structural Assembly

CCHRC worked with Borjesson Engineering to design a structural system for the building that minimizes materials and shipping costs. The design uses readily available components, and can be constructed strictly with manpower and portable lifting equipment in the event that heavy equipment cannot be mobilized with the available funds. The CCHRC option (Option 3) consists of a post and beam system whereby the roof loads are carried by the exterior walls, and at mid-span and ridge by exposed built-up beams supported by two rows of posts. This approach does require more labor than options 1 and 2 posited by Summit, but it eliminates any large heavy members that would require heavy equipment to set into place.

There are not enough structural insulated panels (SIPs) on site to insulate all exposed parts of the MEC to include the walls, floor, and roof. Even if enough panels were on hand to insulate the structure in its entirety, the insulative value of one layer of panels would be inadequate. The resulting heating costs would present a financial liability for the Tribe rather than an advantage. Given these circumstances, the existing SIPs will be used in two layers to adequately insulate the roof. Any remaining panels will be used to build the utility room suspended under the floor that houses the mechanical systems. The wall system shall be framed separately. This approach will create the warmest building and still utilize all the materials already delivered to the Mertarvik Site. In addition to this narrative, see Appendix B for drawings and details.

Roof System

This roof design consists of a vented cathedral ceiling with the rafters exposed from below and covered from above with the 4x8 SIPs that are already on site. The rafters are spaced 4' on center to provide support and attachment for both layers of panels, regardless of orientation. Before the panels can be installed, a thick 10 mil reinforced polyethylene sheeting vapor retarder is to be placed over the rafters. The contractor must verify that the perm rating of the vapor retarder is .06 or less, and that it is rated to withstand several weeks of exposure to sunlight during construction. To attain adequate insulation performance, the roof will use two layers of the 6 3/8" SIPs found on site. The two overlapping layers are installed perpendicular to one another to minimize the number of locations where the seams between the panels line up and extend through both layers. All seams between adjoining panels are to be sealed during installation. The evacuation center is situated in a highly exposed location in a cold maritime climate. As a result, the building exterior will be exposed to periods of severe winds and wind-driven rain. The SIP panels currently on site are manufactured using 7/16" oriented strand board (OSB) sheathing on both faces. History has shown that OSB-faced SIP panels are notoriously vulnerable to moisture damage. Consequently, it is absolutely critical that the roof panels are protected from the weather during construction, and that the roof system is both securely weather proofed and ventilated in order to better survive future moisture intrusion. In designing the roof, CCHRC has followed the current best practices for maritime climates in Alaska (City of Juneau code amended policy on structural on structural panel insulated roofs See Appendix A). The exposed surface of the top layer of SIPs is covered with a breathable waterproofing membrane as the panels are installed. This membrane will help protect panels during construction, and also shield the panels from any moisture that migrates into the roof assembly during the life of the structure. 2x4 sleepers laid at 2' on center, in line with the roof and on top of the membrane covering the SIPs, provide a continuous 1 ½" vented air space from the eaves to the ridge. Both the soffits at the eaves and ridge cap are vented in such a manner as to prevent wind-driven rain from infiltrating the roof assembly at these junctures. A layer of ½" CDX plywood sheathing is nailed over the sleepers, followed by a self healing waterproofing membrane and metal roofing. This assembly will provide an R-66 Roof.
Interior Roof System

The exposed rafters in the roof are supported from below using post and beam construction held together with steel brackets and bolted connections. The posts and related bracing will utilize sawn douglas fir timber while the carrying beams that support the rafters are assembled in place over the posts using several layers of laminated veneer lumber (LVL). Two runs of built-up LVL carrying beams are spaced equally across the width of the building, dividing it into thirds, and thereby supporting the rafters at mid span on each side of the roof. The two runs of beams are continuous for the length of the building. The supporting posts are knee-braced where they meet the carrying beams, and each beam run contains 5 evenly spaced posts. The two runs of posts are connected in pairs by a cross beam. In turn, the cross beams carry a short ridge post at mid span, which supports a ridge beam at the peak. The posts are situated directly on top of the existing Glulam foundation beams, which rest on the H-pile structural foundation that is driven into bedrock.

Wall System

As there are insufficient SIPs on site to adequately form the shell of the building, the exterior walls will be framed with 2x6 studs 16” on center and sheathed on the exterior with ½” CDX plywood. In order to meet structural engineering requirements, the window arrangements in the gable end walls are such that these walls can still provide adequate resistance to wind loads. The sheathing on all exterior walls will have specified nailing patterns, along with blocking to provide support at all panel edges. To unify the various framing elements, the plywood sheathing must extend above the walls to secure the rim board at the rafter terminations, and below the wall to completely lap over the faces of the supporting Glulam beams. The exterior walls will be insulated using the REMOTE wall system. The REMOTE wall system has been vetted in both Alaska’s arctic climates and maritime climates and has proven itself suitable for construction in all regions of Alaska. Instead of relying on interior vapor retarder behind the drywall, the REMOTE wall system locates an air and/or vapor retarder ("exterior membrane") over the sheathing. The bulk of the wall insulation is provided by two 3” layers of rigid foam board which are applied directly over the exterior membrane. The foam is held in place by vertical 2x4 furring strips using structural screws which pass through the foam board and directly into the studs. Metal siding is then applied over the furring strips. This system has significant advantages in cold maritime climates, all of which contribute to long term building durability. The air spaces between the furring strips are screened but left open at the top and bottom. This provides a vented rain screen behind the metal siding whereby the bulk of any wind-driven rain climates that infiltrates beyond the siding is stopped in the air space. As the space is open, water can drain downwards and air can circulate freely providing a drying path for any moisture, should it accumulate in the exterior of the wall assembly. The 6” of exterior insulation keeps the framing warm enough that it is at a much reduced risk of attracting condensation. Should a wetting event occur within the framing cavities, the absence of the vapor retarder provides an inward drying path. This assembly will provide a total R-value of R-39. To facilitate ease of construction, CCHRC has developed an in depth manual that covers the materials, concepts, and details entailed by the the REMOTE system. This manual is available for download in PDF format from the CCHRC website: http://www.cchrc.org/sites/default/files/docs/REMOTE_Manual.pdf

Floor System

Indications are that the MEC floor framing, to include carrying beams and joists, was completed in fall of 2011. At that time, a sacrificial layer of ¾” CDX plywood was nailed over the exposed framing and this plywood layer was covered with what appears to be a thin layer of black roll-applied rubberized asphalt waterproofing. In fall of 2015, CCHRC inspected the floor assembly and it is clear that the temporary weatherproofing has failed and in many areas ponding water on top of the floor is wicking between the seams in the sheathing and wicking into the top flanges of the joists. Although the joists still appear to be sound, many are showing the visible effects of prolonged wetting and an accurate structural assessment will not be possible until the floor sheathing is removed and the top flanges of the joists can be better examined. It is imperative that the floor system be
protected from direct exposure to the elements and further damage. See Stage 1: Protecting the Foundation (pgs 17-18) for CCHRC's recommendations for protecting the floor. Whether the floor is protected with an additional waterproofing membrane or not, it will continue to remain exposed to weather to varying degrees until the building shell is completed. Given the expense associated with replacing damaged floor framing, time is of the essence in regards to completing the MEC enclosure.

Assuming at time of construction that the sacrificial layer ¾ plywood floor sheathing is still sound, then CCHRC advises leaving it in place. This sheathing will provide a working surface during construction and continue to protect the floor until the roof is in place. Once the roof is completed, and both floor joists and beams have sufficiently dried to a wood moisture content of 20% or less, insulating can begin. Given the height of the floor, the sloping ground, and obstacles presented by the pilings, it would be most cost-effective if the bulk of the insulating work could be completed from above. To this end, the underside of the floor should receive a well-sealed air and weather barrier, such as Tyvek Commercial wrap followed by a protective layer of ½" CDX plywood. With the underside of the floor protected and supported, blown-in fiberglass can be installed into the joist bays from above. Blown in dense pack fiberglass is a good choice for this floor system as it is more tolerant of moisture than other products and will fill in voids around the bulky 2x4 parallel chord joists that comprise most of the floor assembly. The existing flooring can be either drilled or removed as needed to install the insulation at the manufacturer-specified density. Once the insulation is in place, the floor can be covered with a fresh layer of ¾" T&G plywood. The plywood should be sealed with caulking at the panel edges to ensure such that it becomes an effective barrier. This floor assembly (16" of blown-in fiberglass) will yield total R-value of R60+.

Mechanical Room

The mechanical room as originally designed by BDS and George Watt takes up significant floorspace in the building and creates staging concerns. The Tribe would like to see the MEC incorporate a watering point for the pioneers in the new community even before the MEC would be completed, and infrastructure is already in place for that approach (see figures below). One solution would be to build the mechanical room for the structure under the floor system. This was the original intent of the 30% Design Analysis Report published in 2009. Given that the pilings are tall, a 14'x20 bay near the sewer and water inflow/outflow service connections can be dedicated to the mech room. The mech room will be 8' tall inside and connected directly to the main floor above. The purpose of the underfloor mechanical room is to keep the bulk of the mechanical systems centralized in a heated and readily serviceable enclosure that is independently accessible. The mechanical room should also be oriented such that it encompasses the water supply and waste lines from above. The mech room floor will be framed inside one of the pile bays by attaching LVL ledger boards between the pilings in the 20’ dimension and then hanging joists between the ledger boards. The floor will be sheathed in ¾” T&G plywood and the walls will be framed with 2x6 studs and ½” CDX plywood sheathing. Any remaining SIP panels can be used insulate the exterior walls and floor of the mech room.

Above: A well and septic have already been installed adjacent to the MEC foundation.
SHELL MATERIALS LIST

CCHRC NEWTOK MERTARVIK EMERGENCY SHELTER (MCS) MATERIALS LIST

UNDERFLOOR FRAMING & INSULATION

<table>
<thead>
<tr>
<th>UNIT DESCRIPTION</th>
<th>QUANTITY</th>
<th>UNITS</th>
<th>SPECIFICATIONS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8" 4X8 UNDERFLOOR UTILITY ROOM</td>
<td>1</td>
<td>EA</td>
<td>STUDS & PLATES 150 OC</td>
<td></td>
</tr>
<tr>
<td>9'X125' TYVEK DRAIN WRAP</td>
<td>7</td>
<td>EA</td>
<td>UNDERFLOOR AIR Barrier</td>
<td></td>
</tr>
<tr>
<td>5/8" 4X8 CDX PLYWOOD</td>
<td>230</td>
<td>EA</td>
<td>UNDERFLOOR SHEATHING</td>
<td>6720 sqft/32 = 210 sheets - round to 230</td>
</tr>
</tbody>
</table>

UNDERFLOOR UTILITY ROOM BETWEEN PILING 14'X20'8"

<table>
<thead>
<tr>
<th>UNIT DESCRIPTION</th>
<th>QUANTITY</th>
<th>UNITS</th>
<th>SPECIFICATIONS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x6x10' DF</td>
<td>50</td>
<td>EA</td>
<td>WALL FURRING AT CORNERS. TREATED GROUND CONTACT RATED</td>
<td>4 exterior corners @ 10' lab x 2 ea per corner = 8ea</td>
</tr>
<tr>
<td>2x6x20' DF</td>
<td>35</td>
<td>EA</td>
<td>EXTERIOR WALL FURRING</td>
<td>50 ea @ 2x6x10' furring strips = 28 ea 2x6@10' round to 55 ea</td>
</tr>
<tr>
<td>2x10x20' PRESSURE TREATED</td>
<td>5</td>
<td>EA</td>
<td>FOAM BOARD EXTERIOR WALLS</td>
<td>14'x20' floor = 290 sqft @ = 9 sheets. Round to 12</td>
</tr>
<tr>
<td>1/2" 4X8 CDX PLYWOOD</td>
<td>25</td>
<td>EA</td>
<td>WALL SHEATHING</td>
<td>66.8 sq ft @ 8" height (incl joist depth) = 6126x2x20 (\text{sq ft})</td>
</tr>
<tr>
<td>5/8" 4X8 CDX PLYWOOD</td>
<td>12</td>
<td>EA</td>
<td>SUBFLOOR</td>
<td>14'x20' floor = 280 sqft @ = 9 sheets. Round to 12</td>
</tr>
<tr>
<td>16" X 1' Joists</td>
<td>15</td>
<td>EA</td>
<td>FLOOR JOISTS 10" OC</td>
<td>FLOOR JOISTS 2015" OC = 15ea 11.7' joists</td>
</tr>
<tr>
<td>10" X 1.34" x 24' LVL</td>
<td>4</td>
<td>EA</td>
<td>LEDGER BEAMS FOR JOISTS</td>
<td>Approx 12.5' span doubled up and resting on welded ledgers @ H Plates. 4 ea rounded to 24' long</td>
</tr>
<tr>
<td>16" X 1.34" x 16" LVL</td>
<td>2</td>
<td>EA</td>
<td>JOISTS UNDER SIDE WALLS</td>
<td>Approx 14' span doubled up and resting on welded ledgers @ H Plates. 4 ea rounded to 18' long</td>
</tr>
<tr>
<td>10" 1" JOIST HANGERS</td>
<td>30</td>
<td>EA</td>
<td>JOIST HANGERS TO FIT JOISTS SPECIFIED IN THIS SECTION</td>
<td></td>
</tr>
<tr>
<td>5/8" 4X8 KNAUF JET STREAM BLOWN IN INSULATION/DENSE PACK</td>
<td>35</td>
<td>EA</td>
<td>FLOOR INSULATION KNAUF JET STREAM ULTRA BLOWN IN FIBERGLASS INSULATION IS RATED TO YIELD APPX 10' TO 10 WHEN INSTALLED IN A 10' DEEP JOIST CAITY AT 1 ISOLATION FT. CORROBAZIS PRODUCTS FROM OTHER MANUFACTURERS MAY HAVE DIFFERENT DENSITIES AND YIELDS AND THIS QUANTITY WILL NEED TO BE ADJUSTED ACCORDING TO MANUFACTURERS SPECIFICATIONS. REF: http://www.knaufinsulation.us/en/content/jet-stream-ultra-blowing-walls-ultra-blowing-walls-cavity-wall-card</td>
<td>To achieve 10" Deep the specs for 7 1/4" dense pack were added to the specs for 5 1/4" dense pack. For 1000 sqft at 1.8 lb/sqft coverage: (7 1/4" + 34 sq ft) PLUS (3 1/4" + 43 sq ft) = 98.7 bags = 259 bags PLUS 91 bags @ 43.4 bags = 77 bags@400 bags. Round up to 259 bags.</td>
</tr>
<tr>
<td>4X8X2' R-TECH 25 PS FOAM BOARD</td>
<td>50</td>
<td>EA</td>
<td>FOAM BOARD EXTERIOR WALLS</td>
<td>912 sqft/2 layers @ 124x903/32 = 33 sheets. Round to 50</td>
</tr>
<tr>
<td>10" HEADLOCK PANEL FASTENER</td>
<td>500</td>
<td>EA</td>
<td>Furring Screws Note: Screw Points and Threads Must Be THE SAME TYPE THAT PERMITS EASY INSTALL INTO WOOD. REF: http://www.knaufinsulation.us/en/content/jet-stream-ultra-blowing-walls-ultra-blowing-walls-insulation-60-lb/foam-board-card</td>
<td>1" Screw depth @ 1.25" forcing + 6" foam + 5/8" sheathing + 1.5" furring framing @ 1" 250 lbs/psf. Screw spacing is 2CD vertical + 9 screws per 16" wall x 25 studs = 4126 pcs PLUS 250 pcs gable ends = 4358 total</td>
</tr>
</tbody>
</table>

EXTERIOR WALL FRAMING

<table>
<thead>
<tr>
<th>UNIT DESCRIPTION</th>
<th>QUANTITY</th>
<th>UNITS</th>
<th>SPECIFICATIONS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8" 4X8 KNAUF JET STREAM BLOWN IN INSULATION/DENSE PACK</td>
<td>650</td>
<td>EA</td>
<td>INSULATION - FIRST FLOOR KNAUF JET STREAM ULTRA BLOWN IN FIBERGLASS INSULATION IS RATED TO YIELD WERE ADDED TO THE SPECS FOR 5 1/4" DENSE PACK. FOR 1000 SQFT AT 1.8 LB/SQFT COVERAGE: (7 1/4" + 34 SQ FT) PLUS (3 1/4" + 43 SQ FT) = 77 BAGS@400 BAGS. BAGS@ 43.4 BAGS = 77 BAGS@1000 BAGS.</td>
<td></td>
</tr>
<tr>
<td>5/8" 4X8 KNAUF JET STREAM BLOWN IN INSULATION/DENSE PACK</td>
<td>2X6X16' DF</td>
<td>408</td>
<td>STUDE STOCK TO BE CUT TO LENGTH AS STUDE</td>
<td>3440 exterior wall 16' OC framing = 528 studs PLUS 150 extra for door framing (trimmers, cripples, sills, etc.) 6/8 ea 2x6x16'</td>
</tr>
<tr>
<td>2X6X20' DFR</td>
<td>156</td>
<td>EA</td>
<td>PLATE AND STUD STOCK</td>
<td>1440 plates x 3 courses = 10022520 = 520 ea studs PLUS 150 extra for door framing (trimmers, cripples, sills, etc.) 6/8 ea 2x6x16'</td>
</tr>
<tr>
<td>5/8" 4X8 KNAUF JET STREAM BLOWN IN INSULATION/DENSE PACK</td>
<td>2X4X16' DF</td>
<td>300</td>
<td>EXTERIOR WALL FURRING</td>
<td>Ref 2x6x16' stud count for calcs</td>
</tr>
<tr>
<td>5/8" 4X8 KNAUF JET STREAM BLOWN IN INSULATION/DENSE PACK</td>
<td>2X4X20' DF</td>
<td>100</td>
<td>EXTERIOR WALL FURRING</td>
<td>Ref 2x6x20' stud count for calcs</td>
</tr>
</tbody>
</table>
34. WALL Furring at Corners: Ground Contact Rated

| 2x10x26 Pressure Treated | 10 | BA | WALL Furring at Corners: Ground Contact Rated |

- 4 exterior corners @ 20" long x 2ea per corner = 8ea
- 2x10x26" Treated wood plg 5 extra

35. EXTERIOR DOORS

| 1/2" 4x8 CEIL PLYWOOD | 237 | BA | EXTERIOR WALL SHEATHING |

- Heights: 1'-0" tall GLS + 1'-0" cover margin = 10' round up to 10', 3450 sq ft (1014 sq ft/32 = 10) + 6 sides = 65 sides. PLUS glue and panels reconditioned. 3" relie 600 sq ft = 10" round up to 600. 130MPH WIND AREA. ESTIMATED QUANTITY. TYPE.

36. WALL METAL

| PANEL2 OR EQUIVALENT PANEL 26 GAUGE | 8000 | SOFT | FOR SIDING EXTERIOR WALLS |

- 13250 sq ft/32 = 2580. 13250 sq ft exteriorwall/32 = 188 sheets + 32 extra = 220 sheets PLUS 2 rolls PLUS 50 extra = 270 sheets

37. EXTERIOR DOORS

| 1/2" WOOD SHEATH | 5 | EA | EXTERIOR WALL SHEATHING |

- 13250 sq ft/32 = 2580. 13250 sq ft exteriorwall/32 = 188 sheets + 32 extra = 220 sheets PLUS 2 rolls PLUS 50 extra = 270 sheets

38. OUTSIDE CORNER FLASHING

| 48 | I | I | 16" x 4 corner = 668 |

- 3440 ft x 2 runs (top&bottom) = 6880. PLUS 3258 ft to wrap windows = 10138. PLUS 668 to wrap doors = 2030. Round to 1503 Lusk?

39. J CHANNEL

| 150 | II | |

- 3440 ft x 2 runs (top&bottom) = 6880. PLUS 3258 ft to wrap windows = 10138. PLUS 668 to wrap doors = 2030. Round to 1503 Lusk?

40. WINDOWS

TRIPLE PANE NORTHERN. ALL WINDOWS TO RECEIVE EXTERIOR AZEK JAMB EXTENSION AND INTERIOR FACTORY BUILT PVC JAMB EXTENSION. 8" INTERIOR PVC JAMB EXTENSION IS FACTORY PRE ASSEMBLED WITH CASING. WINDOW REQUIRES 1" INTERIOR RECEIVING CHANNEL AND "6 H" EXTERIOR RECEIVING CHANNEL

| 63. WINDOW TYPE: OPERABLE CASEMENT / fixed (RC 36" X 48") HINGED: RIGHT HAND OUTSWING (TWO SIDES). WIDTH OF INTERIOR JAMB EXTENSION IS 8" |

| 15 | EA | WINDOWS TYPE: OPERABLE CASEMENT / fixed (RC 36" X 48") HINGED: RIGHT HAND OUTSWING (TWO SIDES). WIDTH OF INTERIOR JAMB EXTENSION IS 8" | NOTES |

- 1 1/2" full = 6" frame + 5/8" sheathing + 5/8" drywall = 14.5". Note: the 5th door is to be used for the underfloor utility room.

68. INTERIOR PARTITION FRAMING & FLOOR SHEATHING

MAIN FLOOR DECK APPROX 112'X80 = 6720 SQFT MEZZANINE DECK APPROX 65'X50 = 33600 SQ FT

| 89. MAIN FLOOR DECK APPROX 112'X80 = 6720 SQFT MEZZANINE DECK APPROX 65'X50 = 33600 SQ FT |

- 6720 sq ft (x 2 sides) = 13440 sq ft. 13440 sq ft/32 = 420 sheets PLUS 50 extra = 470 sheets

<table>
<thead>
<tr>
<th>70. UNIT DESCRIPTION</th>
<th>QUANTITY</th>
<th>UNITS</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>34. T&G PLYWOOD</td>
<td>365</td>
<td>EA</td>
<td>SUBFLOOR: MAIN FLOOR & LOFT</td>
</tr>
<tr>
<td>35. 1 1/8" T&G PLYWOOD</td>
<td>6</td>
<td>EA</td>
<td>STAIR TREADS</td>
</tr>
<tr>
<td>36. PL400 LOCOTITE SUBFLOOR ADHESIVE</td>
<td>156</td>
<td>EA</td>
<td>SUBFLOOR ADHESIVE: LOW VOC RATED FOR WET AND DRY APPLICATIONS. Flowable, ref: http://www.locotitepoultics.com/pl ka 400 vocoverview/loc otile_pl400_voc_subfloor-6-deck_adhesive.htm</td>
</tr>
</tbody>
</table>

- 1 tube covers = 2.5 sheets. 316 sheets = 126 tubes. Round up to 156 tubes
<table>
<thead>
<tr>
<th>UNIT DESCRIPTION</th>
<th>QUANTITY</th>
<th>UNITS</th>
<th>SPECIFICATIONS</th>
<th>NOTES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10' X 10' X 1 1/2</td>
<td>6</td>
<td>EA</td>
<td>BUILT-UP RIDGE BEAM</td>
<td>6 sections @ 18'-8" = 3 sections at 38' (32 plies) = 960 LVL</td>
</tr>
<tr>
<td>10' X 10' X 1 1/2</td>
<td>24</td>
<td>EA</td>
<td>BUILT-UP CARRYING BEAMS FOR RAFTERS.</td>
<td>6 sections @ 18'-8" = 3 sections at 38' (44 plies per beam) = 1284' 40' LVL (2x2 beams) = 2468' 40' LVL</td>
</tr>
<tr>
<td>11' X 10' X 1 1/2</td>
<td>3</td>
<td>EA</td>
<td>RAFTER TAIL RIM BOARD</td>
<td>112 of 3 in board to catch rafter tails round to 120'</td>
</tr>
<tr>
<td>11' X 10' X 1 1/2</td>
<td>6</td>
<td>EA</td>
<td>EXTRA</td>
<td>20' span (4x4 plies per tail) (6x6) = 20ea @ 10 ea = 200</td>
</tr>
<tr>
<td>11' X 10' X 1 1/2</td>
<td>10</td>
<td>EA</td>
<td>CROSS TIES</td>
<td>1 1/2X OC spacing = 28 nails (excluding) 50 nails PLUS 2 additional to top over shear wall = 50 nails (x 5) = 200 nails</td>
</tr>
<tr>
<td>11' X 10' X 1 1/2</td>
<td>125</td>
<td>EA</td>
<td>RAFTERS</td>
<td>112 joists</td>
</tr>
<tr>
<td>16' X 10' X 1 1/2</td>
<td>5</td>
<td>EA</td>
<td>SHEAR WALL FLOOR BEAMS</td>
<td>15EA@14' PLUS 20EA knee braces at 8" x 10"</td>
</tr>
<tr>
<td>8X6X16 OF TIMBER #2 OR BETTER</td>
<td>30</td>
<td>EA</td>
<td>POSTS</td>
<td></td>
</tr>
</tbody>
</table>

84. VARIETY OF BEAM BRACKETS TO BE SOURCED & PROCED BY CCHRC
85. BOLTS, NUTS, WASHERS TO BE SOURCED & PROCED BY CCHRC
86. SEISMIC ANCHORS & HARDWARE TO BE SOURCED & PROCED BY CCHRC
87. ROOF SYSTEM
88. 4X8 SIP PANEL COUNT CALC: (Roof 1 side 3/12 pitch: 32'X114' = 3648sqft) x (2 sides =7296sqft) x (2 layers =14592 sqft) = 456 panels
89. UNIT DESCRIPTION | QUANTITY | UNITS | SPECIFICATIONS | NOTES: |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 ROLLS HYDRAULIC VAPOR RETARDER CURA-G-SVIRM 5MA 100'X60'</td>
<td>3</td>
<td>ROLLS</td>
<td>TO SEAL VAPOR RETARDER LAPS. 56 rafter bays @ 4x30' (6) = 9540sqft x 68 bays = 1548272 sqft coverage per rafter bay = 500 lbs</td>
<td></td>
</tr>
<tr>
<td>500 TUBES</td>
<td>500</td>
<td>TUBES</td>
<td>TRIMCO VB SEALANT 1 Quart (large size tubes) REF: http://www.trimcostaflorida.com/products/trimcostaflorida/trimcostaflorida.html</td>
<td>TO SOURCE & PROCED BY CCHRC</td>
</tr>
<tr>
<td>3720 EA</td>
<td>3720</td>
<td>EA</td>
<td>STRUCTURAL SCREWS FIRST LAYER SIP NOTES</td>
<td>15 screws per panel x 250 panels = 3750ps</td>
</tr>
<tr>
<td>3720 EA</td>
<td>3720</td>
<td>EA</td>
<td>STRUCTURAL SCREWS SECOND LAYER SIP NOTES</td>
<td>15 screws per panel x 250 panels = 3750ps</td>
</tr>
<tr>
<td>2500 EA</td>
<td>2500</td>
<td>EA</td>
<td>ROOF VENT FURRING SCREWS NOTE</td>
<td>TO ATTACH 2X4 ROOF VENT KITS</td>
</tr>
<tr>
<td>2500 EA</td>
<td>2500</td>
<td>EA</td>
<td>ROOF VENT FURRING SCREWS NOTE</td>
<td>TO ATTACH 2X4 ROOF VENT KITS</td>
</tr>
</tbody>
</table>
| 22 ROLLS | 22 | ROLLS | WATERPROOFING MEMBRANE OVER SIP CARLISLE Fire Resist 702 VP Full Rolls 46" X 100' Wall, 1 calculate REF: https://www.carlisle.com/ViewPage?mediaservlet=47f23be042bb1074714298378280895041d75b4d477b45a6e8a6b46e6414 | TO INSTALL OVER THE OSB SIP PANELS AS A VAPOR PERMEABLE (1 PERMS) MEMBRANE TO PROTECT THE PANELS FROM EXPOSURE TO WEATHER DURING INSTALLATION AND TO PROVIDE A SECONDARY WATERPROOF PROTECTIVE LAYER FOR THE OSB AFTER THE ROOF IS COMPLETED. NOTE: TEMPERATURE SENSITIVITIES 2X4 FURRING STRIPS TO BE FASTENED THROUGH THIS UNDERLAYMENT.

10. STRAND REINFORCED POLYETHYLENE SHEETING
11. TREMCO ACCOUSTICAL SEALANT
12. 3 HEADLOCK PANEL FASTENER
13. 16" HEADLOCK PANEL FASTENER
14. 4" HEADLOCK PANEL FASTENER
15. 1" HEADLOCK PANEL FASTENER
16. WATERPROOF VAPOR PERMEABLE SELF ADHERING ROOFING UNDERLAYMENT

26. www.cchrc.org Mertavik Multi-Purpose Building Retrofit Feasibility Study
Notes on the Materials List

This materials list is based off the plans created by CCHRC and Borjesson Engineering. It is not an exhaustive list, and should be considered at 85% completion. Contractors bidding on the completion of the shell will need to factor in materials that are not on this list, including but not limited to: fasteners, flashings, and details pertaining to the heating equipment. Contractors will note that internal sheathing (GWB) has not been included, in case the building shell is left unheated before occupation. Mold will grow inside the structure if this is the case. GWB should not be included in the materials package unless the building will be continuously heated upon construction completion of Stage 2.
Shell Completion

CCHRC worked with Spenard Builder Supply's Rural Sales Office to cost out the materials and shipping for the completion of the shell. SBS is an Alaska-based company with wide experience in rural Alaska construction projects. The following materials cost estimate is dated January 13th, 2016. Costs are subject to change over time, and may be different depending on when the project is completed. This cost estimate is not an official bid, but a method of predicting costs for fundraising efforts to complete the building. Project managers are encouraged to use best-practice formulas for adding inflation and other costs to the estimate as more time passes after the publication of this report.
<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>ITEM DESCRIPTION</th>
<th>UNIT PRICE</th>
<th>EXTENDED PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>1-3/4 X 15" VERSALAM</td>
<td>8.51</td>
<td>1,123.32</td>
</tr>
<tr>
<td>30</td>
<td>MIT/3516 TJT/35X16 T/F HANGER</td>
<td>9.833</td>
<td>294.99</td>
</tr>
<tr>
<td>35</td>
<td>JET-STREAM ULTRA BLOW IN INSULATION</td>
<td>30.694</td>
<td>1,354.29</td>
</tr>
<tr>
<td>50</td>
<td>3" 4X8 25PSI R-TECH</td>
<td>49.765</td>
<td>2,488.25</td>
</tr>
<tr>
<td>1</td>
<td>10" HD ROOF SCREW 500CT OLYMPI</td>
<td>363.99</td>
<td>363.99</td>
</tr>
<tr>
<td>700</td>
<td>26GA NONCLAD PANEL</td>
<td>1.328</td>
<td>929.60</td>
</tr>
<tr>
<td>1</td>
<td>9'X125' TVEK DRAIN WRAP WHITE</td>
<td>194.86</td>
<td>194.86</td>
</tr>
<tr>
<td>5</td>
<td>B65VAK R13 3.5X15 116.25SF UNF</td>
<td>57.20</td>
<td>286.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>ITEM DESCRIPTION</th>
<th>UNIT PRICE</th>
<th>EXTENDED PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>408</td>
<td>2X6 16FT HEM FIR DRIED #2&BTR</td>
<td>568.00</td>
<td>4,360.70</td>
</tr>
<tr>
<td>150</td>
<td>2X6 20FT HEM FIR DRIED #2&BTR</td>
<td>616.00</td>
<td>1,848.00</td>
</tr>
<tr>
<td>300</td>
<td>2X4 16FT HEM FIR DRIED #2&BTR</td>
<td>652.00</td>
<td>2,087.44</td>
</tr>
<tr>
<td>10</td>
<td>2X10 20FT KD S4S AWWF</td>
<td>1,124.00</td>
<td>380.74</td>
</tr>
<tr>
<td>237</td>
<td>1/2" (15/32) CDX PLYWOOD (66)</td>
<td>17.86</td>
<td>2,323.82</td>
</tr>
<tr>
<td>220</td>
<td>3" 4X8 15PSI R-TECH</td>
<td>45.90</td>
<td>10,098.00</td>
</tr>
<tr>
<td>220</td>
<td>3" 4X8 25PSI R-TECH</td>
<td>49.765</td>
<td>12,948.30</td>
</tr>
<tr>
<td>7</td>
<td>9'X125' TVEK DRAIN WRAP WHITE</td>
<td>194.86</td>
<td>1,364.02</td>
</tr>
<tr>
<td>11</td>
<td>10" HD ROOF SCREW 500CT OLYMPI</td>
<td>363.99</td>
<td>4,003.89</td>
</tr>
<tr>
<td>25</td>
<td>AX10810 1X8X10' AZEK TRIMBOARD</td>
<td>48.42</td>
<td>1,210.50</td>
</tr>
<tr>
<td>4</td>
<td>AZ10810 1X10X18' AZEK TRIM BOA</td>
<td>111.45</td>
<td>445.80</td>
</tr>
<tr>
<td>47</td>
<td>B65VAK R13 3.5X15 116.25SF UNF</td>
<td>57.20</td>
<td>2,682.40</td>
</tr>
</tbody>
</table>

NET SALE	**TAX SALE**	**TAX %**	**TAX**	**TOTAL**

CONTINUED
SOLD TO: CASH SPECIAL ORDER-LOIS DR
SHIP TO: 450-1742 ILYA BENESCH
CCHRC METARVIK EVACUATION BLDG NEWTOX, AK

<table>
<thead>
<tr>
<th>QUANTITY ORDERED</th>
<th>QUANTITY SHIPPED</th>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>UNIT PRICE</th>
<th>EXTENDED PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6500</td>
<td>EA 3399 26GA</td>
<td>WALL METAL</td>
<td>NORCLAD PANEL</td>
<td>1.328</td>
<td>8,632.00</td>
</tr>
<tr>
<td>27</td>
<td>BG RMSSCR1P</td>
<td>% #10 9X1" SCREW PAINTED</td>
<td>27BG 25.55 & 689.85</td>
<td>114 PER LB/250 PER BAG/2.20#BG 114 PER LB/250 PER BAG/2.20#BG</td>
<td>349.02</td>
</tr>
<tr>
<td>9</td>
<td>BG RMSSCR34P</td>
<td>3"X23/4" STITCH SCREW PAINTED</td>
<td>9BG 38.78 & 349.02</td>
<td>108 PER LB/250 PER BAG/2.3#BG 108 PER LB/250 PER BAG/2.3#BG</td>
<td>93.95</td>
</tr>
<tr>
<td>5</td>
<td>EA SPC07320595030</td>
<td>OC-2 OUTSIDE CORNER FLASHING 5EA 18.79 & 93.95</td>
<td>150EA 11.14 & 1,671.00</td>
<td>93.95</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EA DTG075525090035</td>
<td>3-0 9-1/4 IS FG TEXT DOOR 5EA 419.97 & 2,099.85</td>
<td>5EA 17.98 & 93.95</td>
<td>93.95</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EA 17323028</td>
<td>EXTERIOR DOORS</td>
<td>ADD-ON DRILL FOR DEAD BOLT 14-1/4 JAMB PRIMED</td>
<td>31.22</td>
<td>156.10</td>
</tr>
<tr>
<td></td>
<td>EA 3399</td>
<td>4X4 HINGE 5/8 26D NRP BB MILL FINISH ADJ 2-SILL</td>
<td>5EA 31.22 & 156.10</td>
<td>10"X4" 24GA DOOR SILL EXTENDER QCL250 PNN ENTRY LEVER 626 QCL250PNN 626</td>
<td>463.45</td>
</tr>
<tr>
<td></td>
<td>EA 17323028</td>
<td>QCL250 PNN ENTRY LEVER 626 QCL250PNN 626 ED 234DS 4</td>
<td>QCL250PNN 626 KD 234DS 4</td>
<td>SHIP: 0023</td>
<td>319.65</td>
</tr>
<tr>
<td></td>
<td>EA 17326263</td>
<td>QDB180 K2 DEADBOLT 626 QDB180CR 626 KD 234BS</td>
<td>QDB180CR 626 KD 234BS</td>
<td>SHIP: 0023</td>
<td>319.65</td>
</tr>
<tr>
<td>13</td>
<td>EA 1399</td>
<td>WINDOWS</td>
<td>INT PARTITION FRAMING</td>
<td>651.12 & 3,464.56</td>
<td>3/0X4/0 TRPL PANE CASE-PER SPE 3/0X6/0 TRPL PANE PIC-PER SPE</td>
</tr>
<tr>
<td>5</td>
<td>EA 1399</td>
<td>3/0X4/0 TRPL PANE CASE-PER SPE 3/0X6/0 TRPL PANE PIC-PER SPE</td>
<td>5EA 450.88 & 2,254.40</td>
<td>CRATING FOR ABOVE WINDOWS</td>
<td>630.00</td>
</tr>
</tbody>
</table>

CONTINUED
SOLD TO: CASH SPECIAL ORDER-LOIS DR
SHIP TO: 450-1742 ILYA BENESCH

<table>
<thead>
<tr>
<th>SELLING STORE</th>
<th>SHIPPING STORE</th>
<th>SALES PERSON</th>
<th>ADDRESS</th>
<th>ACCOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>1632 STEVE LUSK</td>
<td>SBS - LOIS DRIVE 4412 LOIS DR. ANCHORAGE, AK 99517</td>
<td>20-00050020-000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CUSTOMER P.O.</th>
<th>TERMS</th>
<th>CASH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUANTITY ORDERED</th>
<th>QUANTITY SHIPPED</th>
<th>UOM</th>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>UNIT PRICE</th>
<th>EXTENDED PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>365</td>
<td>365</td>
<td>EA</td>
<td>UND34</td>
<td>3/4"(23/32)T&G P&TS UL PLYWOOD</td>
<td>365EA 29.52</td>
<td>10,774.00</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>EA</td>
<td>UND241</td>
<td>1-1/8" 2-4-1 T&G PLYWOOD</td>
<td>5EA 47.76</td>
<td>238.00</td>
</tr>
<tr>
<td>156</td>
<td>156</td>
<td>EA</td>
<td>6771158</td>
<td>PL400 2002 H/D SUBFLOOR ADHESI</td>
<td>156EA 5.837</td>
<td>910.57</td>
</tr>
<tr>
<td>3000</td>
<td>3000</td>
<td>LP</td>
<td>BCI14</td>
<td>BCI 60 14"XR/L JOIST</td>
<td>3000LF 3.665</td>
<td>10,995.00</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>EA</td>
<td>BCI117820VRL</td>
<td>1-5/16"X11-7/8" 20FT VERSA RIM</td>
<td>12EA 76.30</td>
<td>915.60</td>
</tr>
<tr>
<td>640</td>
<td>640</td>
<td>LF</td>
<td>BCI114V</td>
<td>1-3/4 X 14" VERSALAM</td>
<td>640LF 6.88</td>
<td>4,403.20</td>
</tr>
<tr>
<td>240</td>
<td>240</td>
<td>LF</td>
<td>BCI1178V</td>
<td>1-3/4X11-7/8" VERSALAM</td>
<td>240LF 5.42</td>
<td>1,300.80</td>
</tr>
<tr>
<td>276</td>
<td>276</td>
<td>EA</td>
<td>SIMMIT3514</td>
<td>MIT3514 TJI/35X14 T/F HANGER</td>
<td>276EA 7.977</td>
<td>2,201.65</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>BX</td>
<td>NLS112HDJR</td>
<td>81-1/2" HOT DIP GALV JST HNG N</td>
<td>1BX 135.89</td>
<td>135.89</td>
</tr>
<tr>
<td>350</td>
<td>350</td>
<td>EA</td>
<td>2HF20416</td>
<td>2X4 16FT HEM FIR DRIED #2&BTR</td>
<td>3,735MBF 652.00</td>
<td>2,435.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUANTITY ORDERED</th>
<th>QUANTITY SHIPPED</th>
<th>UOM</th>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>UNIT PRICE</th>
<th>EXTENDED PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>EA</td>
<td>2HF20616</td>
<td>2X6 16FT HEM FIR DRIED #2&BTR</td>
<td>1.6MBF 668.00</td>
<td>1,068.80</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>EA</td>
<td>CDX12</td>
<td>1/2" (15/32) CDX PLYWOOD (66)</td>
<td>60EA 17.86</td>
<td>1,071.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*** POST & BEAM FRAMING ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5960</td>
<td>5960</td>
<td>LF</td>
<td>BCI1178V</td>
<td>1-3/4X11-7/8" VERSALAM</td>
<td>5960LF 5.42</td>
<td>32,303.20</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
<td>LF</td>
<td>BCI116V</td>
<td>1-3/4 X 16" VERSALAM</td>
<td>120LF 8.51</td>
<td>1,021.20</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>EA</td>
<td>2GF80016</td>
<td>8X8 16FT GREEN STD & BTR FIR</td>
<td>2.56MBF 1934.00</td>
<td>4,950.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*** ROOF SYSTEM ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>EA</td>
<td>IPR40100CL</td>
<td>40'X100' REINFORCED POLY</td>
<td>3EA 254.55</td>
<td>763.65</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>EA</td>
<td>164040</td>
<td>TREMCO ACOUSTICAL SEALANT</td>
<td>500EA 8.734</td>
<td>4,367.00</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>EA</td>
<td>ROFRSRG10</td>
<td>10" HD ROOF SCREW 500CT OLYMPI</td>
<td>8EA 363.99</td>
<td>2,911.92</td>
</tr>
</tbody>
</table>

ship: 0270

<table>
<thead>
<tr>
<th>QUANTITY ORDERED</th>
<th>QUANTITY SHIPPED</th>
<th>UOM</th>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>UNIT PRICE</th>
<th>EXTENDED PRICE</th>
</tr>
</thead>
</table>

NET SALE: 31,068.80 **TAX SALE:** 915.60 **TAX %:** 9.10 **TAX:** 763.65 **TOTAL:** 32,303.20

CONTINUED
Mertarvik Multi-Purpose Building Retrofit Feasibility Study

<table>
<thead>
<tr>
<th>QUANTITY ORDERED</th>
<th>QUANTITY SHIPPED</th>
<th>UM</th>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>UNIT PRICE</th>
<th>EXTENDED PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>BX</td>
<td>ROF16S</td>
<td>16" OLYMPIC ROOF SCREW</td>
<td>15BX</td>
<td>350.45</td>
<td>5,256.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRH16</td>
<td>250 PER BOX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHIP: 0060</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BX</td>
<td>ROF4SIP</td>
<td>¾" HEADLOK FASTENER</td>
<td>10BX</td>
<td>117.32</td>
<td>1,173.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250 CT BOX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHIP: 0110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BX</td>
<td>ROF11S</td>
<td>11" OLYMPIC ROOF SCREW</td>
<td>10BX</td>
<td>356.89</td>
<td>3,568.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRH11 / 500 CT BOX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHIP: 0060</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>RL</td>
<td>SPC075525090609</td>
<td>CCW 705VP 4'X100' UNDERLAYMENT</td>
<td>22RL</td>
<td>364.28</td>
<td>8,014.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>EA</td>
<td>SPC075525090603</td>
<td>CCW 702WB PRIMER - 5 GAL</td>
<td>10EA</td>
<td>263.11</td>
<td>2,631.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>EA</td>
<td>CCM8000XL</td>
<td>LM-800XL 29GZ LIQUID MASTIC</td>
<td>25EA</td>
<td>15.71</td>
<td>392.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COVERAGE RATE 8 3/4" FILL = 30' PER 29GZ TUBE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAST DRYING - COLD APPLIED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 PER BOX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHIP: 0060</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>EA</td>
<td>CCW3000HT</td>
<td>WIP-300HT BLK 36"X67" 200SF</td>
<td>50EA</td>
<td>115.40</td>
<td>5,770.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SHIP: 0060</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>EA</td>
<td>2HE20616</td>
<td>2X6 16FT HEM FIR DRIED #2&BTR</td>
<td>12MBF</td>
<td>668.00</td>
<td>9,016.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>EA</td>
<td>2HE20416</td>
<td>2X4 16FT HEM FIR DRIED #2&BTR</td>
<td>3.4MBF</td>
<td>652.00</td>
<td>2,226.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>EA</td>
<td>CDX58</td>
<td>5/8" (19/32) CDX PLYWOOD</td>
<td>250EA</td>
<td>22.72</td>
<td>5,680.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>BF</td>
<td>SPC075525090670</td>
<td>26GA SUPER SPAN ROOFING</td>
<td>8000SF</td>
<td>1.69</td>
<td>13,320.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>BG</td>
<td>SPC072991260020</td>
<td>#14X1 WOODGIRP SCREW - PAINTED</td>
<td>85BG</td>
<td>12.96</td>
<td>1,101.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>BG</td>
<td>SPC075525090650</td>
<td>L614X7/8 STITCH SCREW</td>
<td>30BG</td>
<td>11.49</td>
<td>344.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>EA</td>
<td>SPC073278910480</td>
<td>SPECIAL FACIA FLASHING 10'-6"</td>
<td>37EA</td>
<td>16.52</td>
<td>611.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>EA</td>
<td>SPC072991260050</td>
<td>G4 GABLE FLASHING - PAINTED</td>
<td>13EA</td>
<td>22.82</td>
<td>296.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>EA</td>
<td>SPC072991260060</td>
<td>ER2 EAVE FLASHING - PAINTED</td>
<td>24EA</td>
<td>19.32</td>
<td>463.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EA</td>
<td>SPC075525090725</td>
<td>24GA HIGH WIND RIDGE VENT</td>
<td>12EA</td>
<td>181.19</td>
<td>2,174.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EA</td>
<td>SPC072991260100</td>
<td>EXPORT CRATING-TRIMS/FLASHINGS</td>
<td>2EA</td>
<td>49.34</td>
<td>98.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>LF</td>
<td>SPC072991260110</td>
<td>EXPORT CRATE - ROOFING PER L/F</td>
<td>64LF</td>
<td>8.58</td>
<td>549.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NET SALE	**TAX**	**TAX %**	**TAX**	**TOTAL**
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
---|---|---|---|---|
<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>UOM</th>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>UNIT PRICE</th>
<th>EXTENDED PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>228</td>
<td>LF</td>
<td>SPC075525090760</td>
<td>22GA H/D GUTTER W/DOWN SPOUT</td>
<td>10.49</td>
<td>2,391.72</td>
</tr>
<tr>
<td>150</td>
<td>EA</td>
<td>SPC075525090730</td>
<td>26GA SB-2 SNOW BREAK 10'</td>
<td>24.36</td>
<td>3,654.00</td>
</tr>
<tr>
<td>1</td>
<td>EA</td>
<td>CFC075525090780</td>
<td>FREIGHT TO METARVIK LANDING</td>
<td>5724.55</td>
<td>5,724.55</td>
</tr>
</tbody>
</table>

Expires: 5/13/2016

<table>
<thead>
<tr>
<th>NET SALE</th>
<th>TAX SALE</th>
<th>TAX %</th>
<th>TAX</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>407679.83</td>
<td>407679.83</td>
<td>.00</td>
<td>.00</td>
<td>407,679.83</td>
</tr>
<tr>
<td>Description</td>
<td>Qty</td>
<td>U/M</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Steel Plate Saddle Brackets - per Sketchs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FABRICATE - Type "A" Bracket - Shipping weight 950 lbs</td>
<td>10</td>
<td></td>
<td>4,350.00</td>
<td></td>
</tr>
<tr>
<td>FABRICATE - Type "B" Bracket - Shipping weight 1,550 lbs</td>
<td>20</td>
<td></td>
<td>7,000.00</td>
<td></td>
</tr>
<tr>
<td>FABRICATE - Type "C" Bracket - Shipping weight 950 lbs</td>
<td>10</td>
<td></td>
<td>5,800.00</td>
<td></td>
</tr>
<tr>
<td>FABRICATE - Type "D" Bracket - Shipping weight 1,250 lbs</td>
<td>10</td>
<td></td>
<td>5,600.00</td>
<td></td>
</tr>
<tr>
<td>Prime Paint Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOB GSI Shop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quote is based on current steel prices and may have to be reviewed at time of award.

<table>
<thead>
<tr>
<th>Date</th>
<th>Quote #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/17/2016</td>
<td>16-009</td>
</tr>
</tbody>
</table>

Total $22,750.00
January 22, 2016

Mr. Jack Hebert
Cold Climate Housing Research Center
1000 Fairbanks Street
Fairbanks, AK 99709

Re: Metarvik Evacuation Center - Building Shell Construction
Budget Estimate of Labor Hours

Dear Mr. Hebert:

GHEMM Company is pleased to be of assistance to CCHRC in developing a labor cost estimate for construction of the captioned Metarvik Evacuation Center building shell in Newtok, Alaska. After meeting with you and other members of your staff, we have performed an estimate of labor hours needed to complete this project and offer the following for your consideration.

GHEMM anticipates the project will take three (3) months of on-site construction to complete. We would expect to utilize an eight (8) man crew consisting of one superintendent, one site laborer, one equipment operator/mechanic and five carpenters. Our total estimate of labor hours is 10,480. This is based upon a 7-12 work schedule and includes travel time out and back from Fairbanks.

GHEMM’s estimate of costs for this project is $1,380,000 and breaks down as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Labor</td>
<td>$1,020,000</td>
</tr>
<tr>
<td>Home Office Labor, Support</td>
<td>$ 30,000</td>
</tr>
<tr>
<td>Miscellaneous Materials</td>
<td>$ 100,000</td>
</tr>
<tr>
<td>Tools, Equipment, Freight</td>
<td>$ 150,000</td>
</tr>
<tr>
<td>Bonds and Insurance</td>
<td>$ 15,000</td>
</tr>
<tr>
<td>Contingency</td>
<td>$ 60,000</td>
</tr>
</tbody>
</table>

We are happy to answer any questions or provide additional information about this estimate. We wish you the best of success with this project.

Sincerely,

GHEMM Company, Inc.

Meg Nordale
President
SUMMARY OF PROJECT COSTS

The Summit Report calculates the cost of finishing the modified version of the George R Watt Plan at somewhere between $5 million and $5.5 million (Summit, pg 24), with operations and maintenance costs averaging around 45k annually. The difficulty of acquiring such bulk sum funding led CCHRC to investigate a staged strategy that focuses on:

1) Protecting what has already been constructed,
2) Utilizing the SIPs without compromising R-value or creating high operations costs, and
3) Creating a usable shell that can aid the overall relocation process. However, there is no ‘silver bullet’ that will lessen these costs drastically. CCHRC’s inquiry has produced the following totals:

STAGE 1: PROTECT THE FOUNDATION:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>$6,542.20</td>
</tr>
<tr>
<td>Shipping</td>
<td>$2,616.88</td>
</tr>
<tr>
<td>Labor</td>
<td>$9,340.80</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$18,499.88</td>
</tr>
</tbody>
</table>

STAGE 2: COMPLETE THE SHELL

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SBS) Materials</td>
<td>$261,955.28</td>
</tr>
<tr>
<td>(SBS) Shipping</td>
<td>$145,724.55</td>
</tr>
<tr>
<td>(GHEMM) Labor/Materials/Tools/CM</td>
<td>$1,380,000.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$1,787,679.83</td>
</tr>
</tbody>
</table>

This estimate is dated January 22nd, 2016. CCHRC understands that it is uncertain when construction will begin again. NVC is advised to add a yearly inflation rate of 4% for each year after the date of this estimate in their funding budget. If more than nine months passes between the publication of this report and the start of the project, a review of the plans and applicable codes will be necessary.

The Summit Report notes that the level of detail in the George Watt plans only allow for a ‘Framing Only’ permit from the Fire Marshall. The shell completion stage outlined in this report would satisfy the framing only permit. Although no additional studies or engineering analysis would be required on the foundation, the Summit report calls for an additional $300,000 in design fees to be budgeted toward completion of the building. Researching or validating this proposed design fee is outside the scope of this report. It is CCHRC’s recommendation that funds be pursued immediately for stages 1 and 2 of the building completion. During the design process for final permitting, a better idea of completion costs can be estimated without the contingencies and unknowns that may drive up estimates.
MERTARVIK
MULTI-PURPOSE BUILDING
Retrofit Feasibility Study
APPENDIX
Appendix A: SIP Roof Best Practices

Policy On Structural Insulated Panel Roofs

Structural Insulated Panels (SIP) are premanufactured construction materials used in place of standard "stick-built" construction techniques for walls and roofs of buildings. Recent reports from engineers and observation by building inspectors indicate that these panels, when used as roofing materials, have exhibited a very high failure rate in Juneau.

These costly and potentially dangerous failures are generally appearing in the top layer of the panels which have rotted and sometimes deteriorated to an oatmeal consistency as well as in the rotting of the wooden joint materials.

The top and bottom layers of structural insulated panels usually consist of oriented strand board (OSB) which is similar to plywood but with smaller pieces of wood veneer heated and pressed into sheets with resin adhesives. In the panels, bonded between the OSB layers is a layer of foam insulation. The edges of the panels usually contain wooden splines that slip together to join the panels.

The most significant factors contributing to the panel failures in Juneau are the cool temperatures along with the elevated relative humidity in Juneau as compared to other locations. The extra moisture inside and outside our buildings makes the proper installation of the panels more critical in our environment. The specific reasons for the failures appear to be:

1) Lack of continuous vapor retarders (usually plastic sheathing often called "visqueen") on the warm side of the panels thus allowing moisture from the interior of the building into panel voids and joints,
2) Failure of sealants in the panel joints to adhere to the wood and foam (wet surfaces) and thus failure to stop moisture from travelling through the joints to the top layer of OSB
3) Lack of ventilation at the top layer of the panels to dispel the moisture.

In order to avoid future problems with Structural Insulated Panels used as roofs, the City and Borough of Juneau Building Division has adopted the following requirements on the reverse side of this sheet for the use and repair of structural insulated panels in roofs.
REQUIREMENTS FOR INSTALLATION AND REPAIR OF STRUCTURAL INSULATED PANEL ROOFS

Installation or repair of Structural Insulated Panels used in roofs in the City and Borough of Juneau shall meet the following requirements:

1. **Vapor Retarder.** The installation or repair of Structural Insulated Panels in roofs shall include a properly installed and sealed vapor retarder on the warm side of the SIP. The vapor retarder shall be rated at no more than one tenth (0.10) perm by a recognized testing agency.

2. **Roof Ventilation.** Structural Insulated Panels used as roofs shall have a "cold roof" installed over the panels that provides not less than 1½ inches of air space above the top skin of the panel. Such air space shall be continuous from top to bottom and open to the atmosphere at the top and bottom. Other designs will be reviewed and may be approved on a case by case basis.

3. **Sealants.** All voids and interfaces in SIPs, including at joints, shall be completely filled with approved adhesive sealant. Such sealant shall be firmly bonded to the panel materials.

4. **Special Inspection.** Structural Insulated Panels shall be repaired or installed under an approved Special Inspection Program as defined in the building code. The Special Inspection shall cover the following areas:

 A. Proper installation and sealing of the vapor retarder including continuous installation across support elements.

 B. All material surfaces that receive sealants and adhesives shall be dry or meet the manufacturer's specifications.

 C. All sealants and adhesives shall be applied within the temperature ranges specified by the sealant or adhesive manufacturer.

 D. All surfaces to be adhered or sealed shall be in contact with the sealant within the reaction time of the sealant. Surface skinning of the sealant shall not be allowed before the panels are in their final position.

 E. All voids in the panel structure, including voids in connections, shall be completely filled with adhesive sealant.

 F. All penetrations of the vapor retarder shall be properly sealed upon completion of the work requiring the penetration.

 G. All connections to the structure shall be completed in accordance with the manufacturer's instructions and the approved plans for the structure.
GENERAL NOTES

PROJECT DESCRIPTION:
EXISTING FOUNDATION IS STEEL. S PILE ARRAY ON A HOUNCY 14'-0" X 15'-0" GRID AND THE EXISTING DECK LEVEL FLOOR STRUCTURE IS A COMBINATION OF OPEN WEB WOOD JOISTS AND GLULAM BEAMS.

THIS DRAWING SET DETAILS THE INTENDED SHELL FOR THE STRUCTURE.

CONTRACTOR SHALL FIELD VERIFY DIMENSIONS OF EXISTING FOUNDATION COMPONENTS PRIOR TO FABRICATION ORDERING MATERIALS FOR CONSTRUCTION.

ALL DESIGN ELEMENTS NOT SPECIFICALLY SHOWN IN THE CONTRACT DOCUMENTS SHALL BE IN ACCORDANCE WITH THE ISC 2005 AND ISC 2006 REFERENCE STANDARDS.

PRIOR TO FABRICATION AND CONSTRUCTION, THE CONTRACTOR SHALL VERIFY EXISTING ELEVATIONS AND DIMENSIONS ASSOCIATED WITH THE WORK. ALL OMISSIONS OR CONFLICTS BETWEEN VARIOUS ELEMENTS OF THE CONTRACT DRAWINGS AND/OR SPECIFICATIONS SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE CONTRACTING OFFICER PRIOR TO PROCEEDING WITH THE WORK.

THE STRUCTURAL DRAWINGS REPRESENT THE FINISHED STRUCTURE AND DO NOT INDICATE THE METHOD OF CONSTRUCTION. CONSTRUCTION LOADS SHALL NOT EXCEED THE DESIGN LOADS.

TYPICAL DETAILS AS SHOWN ON THE DRAWINGS APPLY TO SIMILAR SITUATIONS OCCURRING ON THE PROPERTY. SIMILAR SPECIFICATIONS APPLY TO SIMILAR ELEMENTS.

FIELD VERIFICATION OF EXISTING ELEVATIONS AND DIMENSIONS ASSOCIATED WITH THE BUILDING STRUCTURE PRIOR TO FABRICATING OR ORDERING CONSTRUCTION MATERIALS SHALL BE SEEN BY A REGISTERED ENGINEER IN THE STATE OF ALASKA.

CONTRACTOR SHALL FIELD VERIFY DIMENSIONS OF EXISTING FOUNDATION COMPONENTS PRIOR TO FABRICATING OR ORDERING CONSTRUCTION MATERIALS.

ARCHITECTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS:

ALL COMPONENTS SHALL BE ANNOTATED TO THE BUILDING STRUCTURE. ARCHIVETAGE SHALL BE DESIGNED FOR ALL DESIGN CASES, INCLUDING SEISMIC, BY THE CONTRACTOR'S ENGINEER AND SUBMITTED TO THE DEPARTMENT OF ABSEcision. DRAWINGS AND SPECIFICATIONS SHALL BE SEEN BY A REGISTERED ENGINEER IN THE STATE OF ALASKA.

SEISMIC FACTORS:

SEISMIC LOADS IN ACCORDANCE WITH THE REQUIREMENTS OF THE 2006 ISC LATERAL LOADS ARE TRANSFERRED TO THE SHEAR WALLS BY A FLEXIBLE DIAMON. RESULTING WALL FORCES ARE CALCULATED BY THE WIND AREA METHOD.

SEISMIC IMPORTANCE FACTORS:

I = 1.0
S = 0.25
SEISMIC DESIGN CATEGORY:

D

SEISMIC RESPONSE COEFFICIENT:

Cg = 0.10

ANALYSIS PROCEDURE:

EQUIVALENT LATERAL FORCE PROCEDURE

ARCHITECTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS:

ALL COMPONENTS SHALL BE ANNOTATED TO THE BUILDING STRUCTURE. ARCHIVETAGE SHALL BE DESIGNED FOR ALL DESIGN CASES, INCLUDING SEISMIC, BY THE CONTRACTOR'S ENGINEER AND SUBMITTED TO THE DEPARTMENT OF ABSEcision. DRAWINGS AND SPECIFICATIONS SHALL BE SEEN BY A REGISTERED ENGINEER IN THE STATE OF ALASKA.

STRUCTURAL TIMBER NOTES:

MATERIALS:

A. DIMENSIONAL LUMBER

SPECIES: DOUGLAS FIR

GRADES: R322-R332

MINIMUM WORKING STRENGTHS (SPECIFY USE CONDITION)

EXTREME FIBER IN BENDING
Fv = 1,000 PSI

TENSION PARALLEL TO GRAIN
Ft = 300 PSI

COMPRESSIVE STRENGTH
Fcc = 750 PSI

FES = 400 PSI

Fb = 0.35Fv

HORIZONTAL SHEAR
Fh = 100 PSI

B. LAMINATED VENEER LUMBER (LVL)

SPECIES:

GRADE: 1.0 GRAD

MODULUS OF ELASTICITY:

Ecc = 30,000 PSI

EXTREME FIBER IN BENDING
Fv = 1,000 PSI

TENSION PARALLEL TO GRAIN
Ft = 350 PSI

COMPRESSIVE STRENGTH
Fcc = 300 PSI

FES = 1,000 PSI

Fb = 0.35Fv

HORIZONTAL SHEAR
Fh = 100 PSI

C. PLYWOOD

FLOOR PLYWOOD SHALL BE ARA RATED STUD-FLOOR EXPOSURE 1, SPAN RATED BY CC. FOR PLYWOOD THICKNESS. SEE PLANS.

WALL PLYWOOD SHALL BE SPAN RATED 118 FOR PLYWOOD THICKNESS. SEE PLANS.

INSTALL ALL PLYWOOD WITH THE LONG DIRECTION OF THE PANEL ACROSS SUPPORTS. UNLESS NOTED OTHERWISE, WITH THE PANEL OVER TWO OR MORE SPANS. ALLOW 1/4 INCH SPACING BETWEEN BOARDS AND NAILHEADS AT PANEL EDGES. UNLESS OTHERWISE RECOMMENDED BY THE PANEL MANUFACTURER, PLYWOOD SHALL BE USED IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ARA PLYWOOD ASSOCIATION.

ALL PLYWOOD WALL PANELS SHALL BE GLUE-NAILED TO FLOOR FRAMING, NAIL SPACING PER PANEL. USE ONLY ADHESIVES CONFORMING TO APA SPECIFICATION AFG-01, APPLIED IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS. IF NON VENEER PANELS WILL BE SEALED SURFACES AND EDGES ARE TO BE USED, USE ONLY SOLVENT-BASED GLUES. CHECK WITH PANEL MANUFACTURER.

THERE SHALL BE NO FIELD CUTTING OF STRUCTURAL TIMBER MEMBERS FOR THE WORK OF OTHER TRADES WITHOUT THE PRIOR REVIEW OF THE ENGINEER.

NO WOOD TREATMENTS OR PRESERVATIVES SHALL BE USED WITHOUT PRIOR REVIEW OF THE ENGINEER.

ALL NAILS SHALL BE HOS COMMON WING NAILS. NAILING SHALL CONFORM TO TABLE 23.5.1 OF THE 2006 ISC STANDARD WASHERS SHALL BE HOT DIP GALVANIZED (HDG) UNDERALL BOLT HEADS AND NUTS CONTACTING WOOD.

ALL BOLTS USED IN TIMBER AND BRACKET CONNECTIONS SHALL BE HDG. THE USE OF TOOLS SHALL NOT BE PERMITTED IN ANY FRAME OR SHEATHING CONNECTIONS.

IF PVC PIPE HANGER ARE TO BE USED THE CONTRACTOR MUST SUBMIT A SCHEDULE OF FASTENERS AS DESIGNED AS A SUBSTITUTION TO THE DEPARTMENT FOR APPROVAL.
PAGE NOTES:
1. LOCATION FOR GUSSET POST AND BRACES TO H.PILES. REF.
 DRAWING: [Reference Number]

FOR MORE INFO ON THE
METARVIK EVACUATION CENTER
EXISTING FOUNDATION, REF DRAWING SET (DATED FEB 2011)

DATE: January 20, 2016

EXISTING FOUNDATION

S-1

PAGE 3 of 13
DRAWING NOTES:
4. SHEAR WALL: 2x6 WALL FRAMING (15" OC) WITH 3/4" PLYWOOD (BOTH SIDES OF WALL), NAILING AND BLOCKING SCHEDULE TBD BY ENGINEER. PLYWOOD TO LAP OVER BOTH SIDES OF 3X14 NL RAFTER.

INSET FOOTNOTES
1. SMOKING POST TO BE FIELD NOTCHED AROUND (S) UPRIGHT BEAM.
DRAWING NOTES:

1. 8x8 KING POST
2. BUILT UP RIDGE BEAM (2)13/4" x 11/2" LAMINATED VENEER LUMBER (LVL)
3. 8x8 WOOD TIMBER KING POST
4. RAIL: (2)LVLs + 1/2" PLYWOOD + (2)LVLs
5. BUILT UP KING POST: (2)LVLs + 1/2" PLYWOOD + (2)LVLs
6. BUILT UP CROSSTIE BEAM: (2)LVLs + 1/2" PLYWOOD + (2)LVLs
7. 8x8 RAFTERS
8. SIP PANELS
9. SIMPSON HUS 140 FACE-MOUNT HANGER
10. BRACKETS E & F ARE VARIATIONS OF D; USED IN SUPPORTING THE MEZZANINE FLOOR JOISTS
11. (EXISTING) 9x24" GLULAM BEAM OR 6 3/4 x 24" GLULAM BEAM (FIELD VERIFY)

BRACKET LOCATIONS

BRACKET A
BRACKET B
BRACKET C
BRACKET D
BRACKET E
BRACKET F
BRACKET G
BRACKET H
A. Bracket A: Post Base to Glulam Beam (6 pcs)

B. Bracket B: Base Brace to Beam (20 pcs)

Width varies to cover 5 1/2 x 24" Glulam Beam.

AXON

Notes:
1. All bolt holes to be 3/8"
2. All steel to be 1/16" plate

Date: January 20, 2016

Timber Frame Bracket Details A & B

S-6
BRACKET E: POST TO BEAM CROSSTIE (2PCS)

AXON

BOTTOM AXON

BRACKET F: POST TO BEAM CROSSTIE (4PCS)

AXON

BOTTOM AXON
TIMBER FRAME BRACKET DETAILS G & H

S-9

PAGE 11 of 13

- **BRACKET G**: Underfloor Knee Brace Top
 - TO CULUM Beam (FCPS)
 - 5/8" hole to fit 2" post
 - Width varies: See page note 3
 - 3/4" to 1 1/2"

- **BRACKET H**: Underfloor Knee Brace Bottom
 - TO H Filler (FCPS)
 - 5/8" hole to fit 2" post

NOTES
1. All bolts holes to fit 3/4" diameter to accept 1/2" bolts
2. All steel to be 5/8" plate unless otherwise specified
3. Width varies
 - Kea to cover Bracket A on 1/2" Culum Beam and (sic) to cover Bracket A on 1/2" Culum Beam
 - Verify on-site beam sizing under/post locations

METAVIK EVACUATION CENTER
BUILDING SHELL STRUCTURAL DESIGN

DATE: January 23, 2018

BRYAN P. BORJESSON, PE

SIGNATURE

CONSTRUCTION INSTRUCTIONS

PAGE 11 of 13
I. BRACKET 1: KINGPOST TO BEAM CROSS TIE (3 PCS)

S-10 | 7 1/2"
-11 1/2-

AXON

PAGE 12 of 13

TIMBER FRAME BRACKET DETAILS

DATE: January 20, 2016

NOTE:
1. ALL BOLTS HOLES TO BE 1/4" DIAMETER TO ACCEPT 5/16" BOLTS
2. ALL STEEL TO BE 3/16" PLATE UNLESS OTHERWISE SPECIFIED.